Computational models of epileptiform activity

[1]  Kaspar Anton Schindler,et al.  Localization of Epileptogenic Zone on Pre-surgical Intracranial EEG Recordings: Toward a Validation of Quantitative Signal Analysis Approaches , 2015, Brain Topography.

[2]  J. Gotman,et al.  Action potentials contribute to epileptic high-frequency oscillations recorded with electrodes remote from neurons , 2015, Clinical Neurophysiology.

[3]  Viktor K. Jirsa,et al.  Mathematical framework for large-scale brain network modeling in The Virtual Brain , 2015, NeuroImage.

[4]  M. Avoli,et al.  Interneuron activity leads to initiation of low‐voltage fast‐onset seizures , 2015, Annals of neurology.

[5]  Richard Miles,et al.  Different mechanisms of ripple‐like oscillations in the human epileptic subiculum , 2015, Annals of neurology.

[6]  Christophe Bernard,et al.  Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Christophe Bernard,et al.  Permittivity Coupling across Brain Regions Determines Seizure Recruitment in Partial Epilepsy , 2014, The Journal of Neuroscience.

[8]  Mark P. Richardson,et al.  Dynamics on Networks: The Role of Local Dynamics and Global Networks on the Emergence of Hypersynchronous Neural Activity , 2014, PLoS Comput. Biol..

[9]  W. Stacey,et al.  On the nature of seizure dynamics. , 2014, Brain : a journal of neurology.

[10]  Stiliyan Kalitzin,et al.  Multiple oscillatory States in Models of Collective neuronal Dynamics , 2014, Int. J. Neural Syst..

[11]  Karl J. Friston On the modelling of seizure dynamics , 2014, Brain : a journal of neurology.

[12]  R. Miles,et al.  Cortical GABAergic excitation contributes to epileptic activities around human glioma , 2014, Science Translational Medicine.

[13]  Nealen G. Laxpati,et al.  Deep Brain Stimulation for the Treatment of Epilepsy: Circuits, Targets, and Trials , 2014, Neurotherapeutics.

[14]  Bin He,et al.  Seizure prediction in hippocampal and neocortical epilepsy using a model-based approach , 2014, Clinical Neurophysiology.

[15]  Antônio C. Roque-da-Silva,et al.  Combined Role of Seizure-Induced Dendritic Morphology Alterations and Spine Loss in Newborn Granule Cells with Mossy Fiber Sprouting on the Hyperexcitability of a Computer Model of the Dentate Gyrus , 2014, PLoS Comput. Biol..

[16]  Ian Schofield,et al.  Gap junction networks can generate both ripple‐like and fast ripple‐like oscillations , 2014, The European journal of neuroscience.

[17]  A. Biraben,et al.  Shape features of epileptic spikes are a marker of epileptogenesis in mice , 2013, Epilepsia.

[18]  L. Kuhlmann,et al.  Mechanisms of Seizure Propagation in 2-Dimensional Centre-Surround Recurrent Networks , 2013, PloS one.

[19]  Fabrice Wendling,et al.  Abnormal binding and disruption in large scale networks involved in human partial seizures , 2013 .

[20]  Viktor K. Jirsa,et al.  The Virtual Brain: a simulator of primate brain network dynamics , 2013, Front. Neuroinform..

[21]  A. Biraben,et al.  Modulation of paroxysmal activity in focal cortical dysplasia by centromedian thalamic nucleus stimulation , 2013, Epilepsy Research.

[22]  Fabrice Wendling,et al.  Modulation of epileptic activity by deep brain stimulation: a model-based study of frequency-dependent effects , 2013, Front. Comput. Neurosci..

[23]  Laurent Albera,et al.  Automatic detection of fast ripples , 2013, Journal of Neuroscience Methods.

[24]  Antônio-Carlos G. Almeida,et al.  Enhanced Synaptic Connectivity in the Dentate Gyrus during Epileptiform Activity: Network Simulation , 2013, Comput. Intell. Neurosci..

[25]  A. Mercer Electrically coupled excitatory neurones in cortical regions , 2012, Brain Research.

[26]  J. Gotman,et al.  High-frequency oscillations (HFOs) in clinical epilepsy , 2012, Progress in Neurobiology.

[27]  Oscar Benjamin,et al.  Seizure generation: The role of nodes and networks , 2012, Epilepsia.

[28]  R. Traub,et al.  Axonal properties determine somatic firing in a model of in vitro CA1 hippocampal sharp wave/ripples and persistent gamma oscillations , 2012, The European journal of neuroscience.

[29]  Pramod P Khargonekar,et al.  Genesis of interictal spikes in the CA1: a computational investigation , 2012, Front. Neural Circuits.

[30]  Gerold Baier,et al.  Modelling the role of tissue heterogeneity in epileptic rhythms , 2012, The European journal of neuroscience.

[31]  John R. Terry,et al.  The dynamic evolution of focal‐onset epilepsies – combining theoretical and clinical observations , 2012, The European journal of neuroscience.

[32]  Fabrice Wendling,et al.  Interictal spikes, fast ripples and seizures in partial epilepsies – combining multi‐level computational models with experimental data , 2012, The European journal of neuroscience.

[33]  Viktor Jirsa,et al.  Changes in interictal spike features precede the onset of temporal lobe epilepsy , 2012, Annals of neurology.

[34]  Massimo Avoli,et al.  A brief history on the oscillating roles of thalamus and cortex in absence seizures , 2012, Epilepsia.

[35]  Stephen Coombes,et al.  Modeling sharp wave‐ripple complexes through a CA3‐CA1 network model with chemical synapses , 2012, Hippocampus.

[36]  T. Papadopoulo,et al.  Modeling of the Neurovascular Coupling in Epileptic Discharges , 2012, Brain Topography.

[37]  Fabrice Wendling,et al.  Distinct hyperexcitability mechanisms underlie fast ripples and epileptic spikes , 2012, Annals of neurology.

[38]  F. Wendling,et al.  Recording of fast activity at the onset of partial seizures: Depth EEG vs. scalp EEG , 2012, NeuroImage.

[39]  Kaspar Anton Schindler,et al.  Self-organised transients in a neural mass model of epileptogenic tissue dynamics , 2012, NeuroImage.

[40]  Frank Marten,et al.  Characterising the dynamics of EEG waveforms as the path through parameter space of a neural mass model: Application to epilepsy seizure evolution , 2012, NeuroImage.

[41]  Udaya Seneviratne,et al.  The electroencephalogram of idiopathic generalized epilepsy , 2012, Epilepsia.

[42]  John R. Terry,et al.  A phenomenological model of seizure initiation suggests network structure may explain seizure frequency in idiopathic generalised epilepsy , 2012, Journal of mathematical neuroscience.

[43]  Stiliyan Kalitzin,et al.  Computational model prospective on the observation of proictal states in epileptic neuronal systems , 2011, Epilepsy & Behavior.

[44]  Olivier D. Faugeras,et al.  Neural Mass Activity, Bifurcations, and Epilepsy , 2011, Neural Computation.

[45]  Thom F. Oostendorp,et al.  Towards a model-based integration of co-registered electroencephalography/functional magnetic resonance imaging data with realistic neural population meshes , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[46]  Chou-Ching K. Lin,et al.  Description and computational modeling of the whole course of status epilepticus induced by low dose lithium–pilocarpine in rats , 2011, Brain Research.

[47]  Philippe Kahane,et al.  Imaging the seizure onset zone with stereo-electroencephalography. , 2011, Brain : a journal of neurology.

[48]  Boyuan Yan,et al.  An Integrative View of Mechanisms Underlying Generalized Spike-and-Wave Epileptic Seizures and Its Implication on Optimal Therapeutic Treatments , 2011, PloS one.

[49]  Roger D. Traub,et al.  Wave Speed in Excitable Random Networks with Spatially Constrained Connections , 2011, PloS one.

[50]  Laurent Albera,et al.  Localization of extended brain sources from EEG/MEG: The ExSo-MUSIC approach , 2011, NeuroImage.

[51]  Francesco Cardinale,et al.  Identification of reproducible ictal patterns based on quantified frequency analysis of intracranial EEG signals , 2011, Epilepsia.

[52]  Fabrice Wendling,et al.  Relationship Between Flow and Metabolism in BOLD Signals: Insights from Biophysical Models , 2011, Brain Topography.

[53]  E. Marder,et al.  Multiple models to capture the variability in biological neurons and networks , 2011, Nature Neuroscience.

[54]  Guglielmo Foffani,et al.  Emergent Dynamics of Fast Ripples in the Epileptic Hippocampus , 2010, The Journal of Neuroscience.

[55]  Fabrice Wendling,et al.  Computational Modeling of Epileptic Activity: From Cortical Sources to EEG Signals , 2010, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[56]  Fabrice Wendling,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[57]  Fabrice Wendling,et al.  Computational modeling of high-frequency oscillations at the onset of neocortical partial seizures: From ‘altered structure’ to ‘dysfunction’ , 2010, NeuroImage.

[58]  Christoph Börgers,et al.  Mechanisms of very fast oscillations in networks of axons coupled by gap junctions , 2010, Journal of Computational Neuroscience.

[59]  Philippe Kahane,et al.  Deep brain stimulation in epilepsy: what is next? , 2010, Current opinion in neurology.

[60]  C. Bénar,et al.  Pitfalls of high-pass filtering for detecting epileptic oscillations: A technical note on “false” ripples , 2010, Clinical Neurophysiology.

[61]  Demetrios N. Velis,et al.  Stimulation-based anticipation and control of state transitions in the epileptic brain , 2010, Epilepsy & Behavior.

[62]  Andrew White,et al.  EEG spike activity precedes epilepsy after kainate‐induced status epilepticus , 2010, Epilepsia.

[63]  J. Gotman,et al.  High‐frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery , 2010, Annals of neurology.

[64]  R. Traub,et al.  A nonsynaptic mechanism underlying interictal discharges in human epileptic neocortex , 2009, Proceedings of the National Academy of Sciences.

[65]  Torsten Baldeweg,et al.  Spatiotemporal patterns of electrocorticographic very fast oscillations (>80 Hz) consistent with a network model based on electrical coupling between principal neurons , 2009, Epilepsia.

[66]  K. Lehnertz,et al.  Synchronization phenomena in human epileptic brain networks , 2009, Journal of Neuroscience Methods.

[67]  G. Westbrook,et al.  Direct actions of carbenoxolone on synaptic transmission and neuronal membrane properties. , 2009, Journal of neurophysiology.

[68]  Fabrice Wendling,et al.  Analysis of Intracerebral EEG Recordings of Epileptic Spikes: Insights From a Neural Network Model , 2009, IEEE Transactions on Biomedical Engineering.

[69]  David Barton,et al.  Transitions to spike-wave oscillations and epileptic dynamics in a human cortico-thalamic mean-field model , 2009, Journal of Computational Neuroscience.

[70]  J. A. Roberts,et al.  Dynamics of epileptic seizures: evolution, spreading, and suppression. , 2009, Journal of theoretical biology.

[71]  J. Gotman,et al.  High frequency oscillations in intracranial EEGs mark epileptogenicity rather than lesion type. , 2009, Brain : a journal of neurology.

[72]  M. de Curtis,et al.  Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro , 2008, Annals of neurology.

[73]  J. Parra,et al.  Active paradigms of seizure anticipation: computer model evidence for necessity of stimulation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  Steven J. Middleton,et al.  Model of very fast (> 75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells , 2008, The European journal of neuroscience.

[75]  T. Sejnowski,et al.  Potassium Dynamics in the Epileptic Cortex: New Insights on an Old Topic , 2008, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[76]  Fabrice Wendling,et al.  The neuronal sources of EEG: Modeling of simultaneous scalp and intracerebral recordings in epilepsy , 2008, NeuroImage.

[77]  W. Lytton Computer modelling of epilepsy , 2008, Nature Reviews Neuroscience.

[78]  Giuseppe Biagini,et al.  The pilocarpine model of temporal lobe epilepsy , 2008, Journal of Neuroscience Methods.

[79]  P. Robinson,et al.  Modeling absence seizure dynamics: implications for basic mechanisms and measurement of thalamocortical and corticothalamic latencies. , 2008, Journal of theoretical biology.

[80]  P. Chauvel,et al.  Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. , 2008, Brain : a journal of neurology.

[81]  F. Wendling Computational models of epileptic activity: a bridge between observation and pathophysiological interpretation , 2008, Expert review of neurotherapeutics.

[82]  Nelson J. Trujillo-Barreto,et al.  Biophysical model for integrating neuronal activity, EEG, fMRI and metabolism , 2008, NeuroImage.

[83]  Guglielmo Foffani,et al.  Reduced Spike-Timing Reliability Correlates with the Emergence of Fast Ripples in the Rat Epileptic Hippocampus , 2007, Neuron.

[84]  K. Staley Neurons Skip a Beat during Fast Ripples , 2007, Neuron.

[85]  Jean Gotman,et al.  Interictal high-frequency oscillations (100-500 Hz) in the intracerebral EEG of epileptic patients. , 2007, Brain : a journal of neurology.

[86]  Fabrice Wendling,et al.  Modeling of Entorhinal Cortex and Simulation of Epileptic Activity: Insights Into the Role of Inhibition-Related Parameters , 2007, IEEE Transactions on Information Technology in Biomedicine.

[87]  Fabrice Wendling,et al.  A Physiologically Plausible Spatio-Temporal Model for EEG Signals Recorded With Intracerebral Electrodes in Human Partial Epilepsy , 2007, IEEE Transactions on Biomedical Engineering.

[88]  Mark A. Kramer,et al.  Mechanisms of seizure propagation in a cortical model , 2007, Journal of Computational Neuroscience.

[89]  Fabrice Wendling,et al.  Cell domain‐dependent changes in the glutamatergic and GABAergic drives during epileptogenesis in the rat CA1 region , 2007, The Journal of physiology.

[90]  Kaspar Anton Schindler,et al.  Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. , 2006, Brain : a journal of neurology.

[91]  Giuseppe Biagini,et al.  Do Interictal Spikes Sustain Seizures and Epileptogenesis? , 2006, Epilepsy currents.

[92]  F. Dudek,et al.  Interictal Spikes and Epileptogenesis , 2006, Epilepsy currents.

[93]  David Golomb,et al.  Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. , 2006, Journal of neurophysiology.

[94]  M. Ursino,et al.  Travelling waves and EEG patterns during epileptic seizure: analysis with an integrate-and-fire neural network. , 2006, Journal of theoretical biology.

[95]  John R. Terry,et al.  A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. , 2006, Cerebral cortex.

[96]  F Wendling,et al.  Realistic modeling of entorhinal cortex field potentials and interpretation of epileptic activity in the guinea pig isolated brain preparation. , 2006, Journal of neurophysiology.

[97]  J. Régis,et al.  The role of corticothalamic coupling in human temporal lobe epilepsy. , 2006, Brain : a journal of neurology.

[98]  W. Lytton,et al.  Computer simulation of epilepsy: Implications for seizure spread and behavioral dysfunction , 2005, Epilepsy & Behavior.

[99]  J. Bellanger,et al.  Interictal to Ictal Transition in Human Temporal Lobe Epilepsy: Insights From a Computational Model of Intracerebral EEG , 2005, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[100]  Stephen Coombes,et al.  Waves, bumps, and patterns in neural field theories , 2005, Biological Cybernetics.

[101]  M. Hereld,et al.  Emergent epileptiform activity in neural networks with weak excitatory synapses , 2005, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[102]  M. Kramer,et al.  Pathological pattern formation and cortical propagation of epileptic seizures , 2005, Journal of The Royal Society Interface.

[103]  F. L. D. Silva,et al.  Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network , 2004, Neuroscience.

[104]  J. Quattrochi,et al.  Computational models of epileptiform activity in single neurons. , 2004, Bio Systems.

[105]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[106]  Kevin J. Staley,et al.  Mechanisms of Fast Ripples in the Hippocampus , 2004, The Journal of Neuroscience.

[107]  Richard Burgess,et al.  A critical review of the different conceptual hypotheses framing human focal epilepsy. , 2004, Epileptic disorders : international epilepsy journal with videotape.

[108]  J. Parra,et al.  Epilepsies as Dynamical Diseases of Brain Systems: Basic Models of the Transition Between Normal and Epileptic Activity , 2003, Epilepsia.

[109]  Y. Ben-Ari,et al.  Effects of Antiepileptic Drugs on Refractory Seizures in the Intact Immature Corticohippocampal Formation In Vitro , 2003, Epilepsia.

[110]  A. Gutierrez-Galvez,et al.  Coherent oscillations as a neural code in a model of the olfactory system , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[111]  R. Whitehouse,et al.  Neurophysical Modeling of Brain Dynamics , 2003, Neuropsychopharmacology.

[112]  J. Bellanger,et al.  Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset. , 2003, Brain : a journal of neurology.

[113]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. , 2003, Journal of neurophysiology.

[114]  M. Steriade,et al.  Neocortical very fast oscillations (ripples, 80-200 Hz) during seizures: intracellular correlates. , 2003, Journal of neurophysiology.

[115]  Robert Costalat,et al.  A Model of the Coupling between Brain Electrical Activity, Metabolism, and Hemodynamics: Application to the Interpretation of Functional Neuroimaging , 2002, NeuroImage.

[116]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[117]  J. Bellanger,et al.  Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition , 2002, The European journal of neuroscience.

[118]  Xiao-Jing Wang,et al.  Pacemaker neurons for the theta rhythm and their synchronization in the septohippocampal reciprocal loop. , 2002, Journal of neurophysiology.

[119]  H. Lüders,et al.  Deep Brain Stimulation in Epilepsy , 2001, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[120]  J. Bellanger,et al.  Neural networks involving the medial temporal structures in temporal lobe epilepsy , 2001, Clinical Neurophysiology.

[121]  M. Curtis,et al.  Interictal spikes in focal epileptogenesis , 2001, Progress in Neurobiology.

[122]  Helen J. Cross,et al.  A Possible Role for Gap Junctions in Generation of Very Fast EEG Oscillations Preceding the Onset of, and Perhaps Initiating, Seizures , 2001, Epilepsia.

[123]  Fiona E. N. LeBeau,et al.  A Possible Role for Gap Junctions in Generation of Very Fast EEG Oscillations Preceding the Onset of, and Perhaps Initiating, Seizures , 2001 .

[124]  C. Binnie,et al.  Failed surgery for epilepsy. A study of persistence and recurrence of seizures following temporal resection. , 2000, Brain : a journal of neurology.

[125]  Fabrice Wendling,et al.  Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals , 2000, Biological Cybernetics.

[126]  D. Colella,et al.  Brain chirps: spectrographic signatures of epileptic seizures , 2000, Clinical Neurophysiology.

[127]  Roger D. Traub,et al.  A Model of High-Frequency Ripples in the Hippocampus Based on Synaptic Coupling Plus Axon–Axon Gap Junctions between Pyramidal Neurons , 2000, The Journal of Neuroscience.

[128]  S. Spencer,et al.  Intracranial EEG Seizure‐Onset Patterns in Neocortical Epilepsy , 2000, Epilepsia.

[129]  T J Lewis,et al.  Self-organized synchronous oscillations in a network of excitable cells coupled by gap junctions , 2000, Network.

[130]  C. Wilson,et al.  Electrophysiologic Analysis of a Chronic Seizure Model After Unilateral Hippocampal KA Injection , 1999, Epilepsia.

[131]  A. Destexhe,et al.  Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents? , 1999, The European journal of neuroscience.

[132]  R. Traub,et al.  High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions , 1999, Neuroscience.

[133]  Charles L. Wilson,et al.  Hippocampal and Entorhinal Cortex High‐Frequency Oscillations (100–500 Hz) in Human Epileptic Brain and in Kainic Acid‐Treated Rats with Chronic Seizures , 1999, Epilepsia.

[134]  A. Destexhe Spike-and-Wave Oscillations Based on the Properties of GABAB Receptors , 1998, The Journal of Neuroscience.

[135]  R. Traub,et al.  Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro , 1998, Nature.

[136]  Y. Amitai,et al.  Propagating neuronal discharges in neocortical slices: computational and experimental study. , 1997, Journal of neurophysiology.

[137]  D. Contreras,et al.  Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. , 1997, Journal of neurophysiology.

[138]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[139]  H. Haken,et al.  Field Theory of Electromagnetic Brain Activity. , 1996, Physical review letters.

[140]  T. Sejnowski,et al.  G protein activation kinetics and spillover of gamma-aminobutyric acid may account for differences between inhibitory responses in the hippocampus and thalamus. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[141]  David M. Treiman,et al.  Electroclinical Features of Status Epilepticus , 1995, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[142]  G. V. Wallenstein The role of thalamic IGABAb in generating spike‐wave discharges during petit mal seizures , 1994, Neuroreport.

[143]  C. N. Guy,et al.  Intracerebral propagation of interictal activity in partial epilepsy: implications for source localisation. , 1994, Journal of neurology, neurosurgery, and psychiatry.

[144]  T. Sejnowski,et al.  A model for 8-10 Hz spindling in interconnected thalamic relay and reticularis neurons. , 1993, Biophysical journal.

[145]  T. Sejnowski,et al.  Computer model of ethosuximide's effect on a thalamic neuron , 1992, Annals of neurology.

[146]  R. Traub,et al.  A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. , 1991, Journal of neurophysiology.

[147]  M. Brodie Status epilepticus in adults , 1990, The Lancet.

[148]  F. L. D. Silva,et al.  Localization of epileptogenic foci using a new signal analytical approach , 1990, Neurophysiologie Clinique/Clinical Neurophysiology.

[149]  R. Traub,et al.  Spread of synchronous firing in longitudinal slices from the CA3 region of the hippocampus. , 1988, Journal of neurophysiology.

[150]  W. Freeman Simulation of chaotic EEG patterns with a dynamic model of the olfactory system , 1987, Biological Cybernetics.

[151]  R. D. Traub,et al.  Models of the cellular mechanism underlying propagation of epileptiform activity in the CA2-CA3 region of the hippocampal slice , 1987, Neuroscience.

[152]  R. D. Traub,et al.  Synchronized afterdischarges in the hippocampus: Simulation studies of the cellular mechanism , 1984, Neuroscience.

[153]  Howard V. Wheal,et al.  Electrophysiology of Epilepsy , 1984 .

[154]  F. Ventriglia,et al.  Propagation of excitation in a model of neural system , 1978, Biological Cybernetics.

[155]  L. Kristiansson,et al.  Performance of a model for a local neuron population , 1978, Biological Cybernetics.

[156]  F. H. Lopes da Silva,et al.  Model of brain rhythmic activity , 1974, Kybernetik.

[157]  F Ventriglia,et al.  Kinetic approach to neural systems. , 1974, The International journal of neuroscience.

[158]  G. E. Chatrian,et al.  La stéréo-électroencéphalographie dans l'épilepsie. Informations neurophysiopathologiques apportées par l'investigation fonctionnelle stéréotaxique , 1967 .

[159]  C. A. Marsan,et al.  CORTICAL CELLULAR PHENOMENA IN EXPERIMENTAL EPILEPSY: INTERICTAL MANIFESTATIONS. , 1964, Experimental neurology.

[160]  R. L. Beurle Properties of a mass of cells capable of regenerating pulses , 1956, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[161]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[162]  A. Ivanov,et al.  Hippocampus In Vitro , 2017 .

[163]  A. Destexhe Network Models of Absence Seizures , 2014 .

[164]  Sebastien Naze,et al.  Modern concepts of seizure modeling. , 2014, International review of neurobiology.

[165]  Benjamin F. Grewe,et al.  High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision , 2010, Nature Methods.

[166]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[167]  Ben H. Jansen,et al.  A neurophysiologically-based mathematical model of flash visual evoked potentials , 2004, Biological Cybernetics.

[168]  R. Traub,et al.  Axonal Gap Junctions Between Principal Neurons: A Novel Source of Network Oscillations, and Perhaps Epileptogenesis , 2002, Reviews in the neurosciences.

[169]  Charles L. Wilson,et al.  High‐frequency oscillations in human brain , 1999, Hippocampus.

[170]  F. H. Lopes da Silva,et al.  Models of neuronal populations: the basic mechanisms of rhythmicity. , 1976, Progress in brain research.

[171]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[172]  W J Freeman,et al.  Patterns of variation in waveform of averaged evoked potentials from prepyriform cortex of cats. , 1968, Journal of neurophysiology.

[173]  W. Freeman,et al.  THE ELECTRICAL ACTIVITY OF A PRIMARY SENSORY CORTEX: ANALYSIS OF EEG WAVES. , 1963, International review of neurobiology.

[174]  J. Talairach,et al.  Functional stereotaxic exploration of epilepsy. , 1962, Confinia neurologica.