Effect of applied electric fields on the writing and the readout of photorefractive gratings

We explore theoretically and experimentally how applying an electric field to a photorefractive crystal affects the recording and the readout of a hologram. We present a unified theory that describes several electric-field-related mechanisms relevant to photorefractive crystals, including amplitude coupling, phase coupling, linear and nonlinear electro-optic effects, and the piezoelectric effect. We analyze the influence of these different effects on the Bragg selectivity and the diffraction efficiency and derive general analytical expressions describing the Bragg detuning effects. Finally, we compare the theory with experiments that we have performed in a strontium barium niobate crystal by recording and retrieving holograms in the presence of an applied electric field.

[1]  Lambertus Hesselink,et al.  Evolution and propagation of grating envelopes during erasure in bulk photorefractive media , 1995 .

[2]  M. C. Bashaw,et al.  Trapping the grating envelope in bulk photorefractive media. , 1994, Optics letters.

[3]  Günter,et al.  Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals. , 1994, Physical review. B, Condensed matter.

[4]  J. Wilde,et al.  Effect of applied fields on the Bragg condition and the diffraction efficiency in photorefractive crystals. , 1994, Optics letters.

[5]  David R. Selviah,et al.  Bragg-shift of holographic gratings in photorefractive Fe:LiNbO3 crystals , 1994 .

[6]  J. Wilde,et al.  Electric field control of image-bearing volume holograms stored in photorefractive media , 1994 .

[7]  Lei Zhang,et al.  High-Performance Photorefractive Polymers , 1994, Science.

[8]  Lambertus Hesselink,et al.  Optical memories implemented with photorefractive media , 1993 .

[9]  A Yariv,et al.  Selective page-addressable fixing of volume holograms in Sr(0.75)Ba(0.25)Nb(2)O(6) crystals. , 1993, Optics letters.

[10]  P. Xie,et al.  THEORETICAL AND EXPERIMENTAL STUDIES OF FANNING EFFECTS IN PHOTOREFRACTIVE CRYSTALS , 1993 .

[11]  Demetri Psaltis,et al.  Electrical fixing of photorefractive holograms in Sr0.75Ba0.25Nb2O6 , 1993 .

[12]  R R Neurgaonkar,et al.  Electric-field multiplexing/demultiplexing of volume holograms in photorefractive media. , 1993, Optics letters.

[13]  Michael R. Melloch,et al.  Photorefractive quantum wells: Transverse Franz-Keldysh geometry , 1992 .

[14]  H. M. Pedersen Geometrical theory of fields radiated from three-dimensional, quasi-homogeneous sources , 1992 .

[15]  Pochi Yeh,et al.  Diffraction properties of momentum-mismatched gratings in photorefractive media , 1992 .

[16]  Joseph E. Ford,et al.  Multiplex holography in strontium barium niobate with applied field , 1992 .

[17]  L Hesselink,et al.  Electric-field-controlled diffraction in photorefractive strontium barium niobate. , 1992, Optics letters.

[18]  P. Günter,et al.  Clamped-unclamped electro-optic coefficient dilemma in photorefractive phenomena. , 1991, Optics letters.

[19]  R. Neurgaonkar,et al.  Large photorefractive coupling coefficient in a thin cerium-doped strontium barium niobate crystal , 1991 .

[20]  G. Pauliat,et al.  Influence of piezoelectricity on the photorefractive effect , 1991 .

[21]  J H Hong,et al.  Diffraction efficiency of volume holograms written by coupled beams. , 1990, Optics letters.

[22]  P. Yeh Two-Wave Mixing in Nonlinear Media , 1995 .

[23]  L Hesselink,et al.  Enhanced nondestructive holographic readout in strontium barium niobate. , 1988, Optics letters.

[24]  Liren Liu,et al.  Electrocontrolled beam coupling and bistable behavior in SBN:Ce crystals , 1988 .

[25]  Ratnakar R. Neurgaonkar,et al.  Electrooptic and piezoelectric measurements in photorefractive barium titanate and strontium barium niobate , 1987 .

[26]  Cross,et al.  Measurements of strain and the optical indices in the ferroelectric Ba0.4Sr0.6Nb2O6: Polarization effects. , 1987, Physical review. B, Condensed matter.

[27]  Ratnakar R. Neurgaonkar,et al.  Photorefractive properties of strontium‐barium niobate , 1987 .

[28]  G. Roosen,et al.  Effect of applied electric field on the buildup and decay of photorefractive gratings , 1986 .

[29]  Tony Wilson,et al.  Diffraction Efficiency and Angular Selectivity of Volume Phase Holograms Recorded in Photorefractive Materials , 1984 .

[30]  T. Kubota The Bending of Interference Fringes inside a Hologram , 1979 .

[31]  Nikolai V. Kukhtarev,et al.  Kinetics of hologram recording and erasure in electrooptic crystals , 1976 .

[32]  J B Thaxter,et al.  Unique Properties of SBN and Their Use in a Layered Optical Memory. , 1974, Applied optics.

[33]  D. Staebler,et al.  Holographic storage in electrooptic crystals , 1973 .

[34]  J. J. Amodei,et al.  Coupled‐Wave Analysis of Holographic Storage in LiNbO3 , 1972 .

[35]  H. Kogelnik Coupled wave theory for thick hologram gratings , 1969 .

[36]  Selviah,et al.  Optimum Replay Angle for Maximum Diffraction Efficiency of Holographic Gratings in Fe:LiNbO3 Crystals , 1993, Photorefractive Materials, Effects And Devices Prm'93.

[37]  J. Wilde Growth and Characterization of Strontium Barium Niobate Crystals for Multiplex Photorefractive Holography , 1993 .

[38]  M. Soskin,et al.  Holographic storage in electrooptic crystals. i. steady state , 1978 .