Subclass discriminant analysis

Over the years, many discriminant analysis (DA) algorithms have been proposed for the study of high-dimensional data in a large variety of problems. Each of these algorithms is tuned to a specific type of data distribution (that which best models the problem at hand). Unfortunately, in most problems the form of each class pdf is a priori unknown, and the selection of the DA algorithm that best fits our data is done over trial-and-error. Ideally, one would like to have a single formulation which can be used for most distribution types. This can be achieved by approximating the underlying distribution of each class with a mixture of Gaussians. In this approach, the major problem to be addressed is that of determining the optimal number of Gaussians per class, i.e., the number of subclasses. In this paper, two criteria able to find the most convenient division of each class into a set of subclasses are derived. Extensive experimental results are shown using five databases. Comparisons are given against linear discriminant analysis (LDA), direct LDA (DLDA), heteroscedastic LDA (HLDA), nonparametric DA (NDA), and kernel-based LDA (K-LDA). We show that our method is always the best or comparable to the best

[1]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[2]  Kohji Fukunaga,et al.  Introduction to Statistical Pattern Recognition-Second Edition , 1990 .

[3]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[4]  Avinash C. Kak,et al.  PCA versus LDA , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Ming-Hsuan Yang,et al.  Kernel Eigenfaces vs. Kernel Fisherfaces: Face recognition using kernel methods , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[6]  Keinosuke Fukunaga,et al.  A Nonparametric Valley-Seeking Technique for Cluster Analysis , 1971, IEEE Transactions on Computers.

[7]  R. Tibshirani,et al.  Penalized Discriminant Analysis , 1995 .

[8]  Calyampudi Radhakrishna Rao,et al.  Linear Statistical Inference and its Applications , 1967 .

[9]  Hong Z. Tan,et al.  Template-based Recognition of Static Sitting Postures , 2003, 2003 Conference on Computer Vision and Pattern Recognition Workshop.

[10]  László Györfi,et al.  A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.

[11]  Jian Yang,et al.  KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Jordi Vitrià,et al.  Clustering in image space for place recognition and visual annotations for human-robot interaction , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[13]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[14]  N. L. Johnson,et al.  Linear Statistical Inference and Its Applications , 1966 .

[15]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[16]  Robert P. W. Duin,et al.  Multiclass Linear Dimension Reduction by Weighted Pairwise Fisher Criteria , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Narendra Ahuja,et al.  Face Detection Using Multimodal Density Models , 2001, Comput. Vis. Image Underst..

[19]  R. Tibshirani,et al.  Discriminant Analysis by Gaussian Mixtures , 1996 .

[20]  R. Fisher THE STATISTICAL UTILIZATION OF MULTIPLE MEASUREMENTS , 1938 .

[21]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[22]  Bernt Schiele,et al.  Analyzing contour and appearance based methods for object categorization , 2003, CVPR 2003.

[23]  Rama Chellappa,et al.  Multiple-exemplar discriminant analysis for face recognition , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[24]  Takeo Kanade,et al.  Oriented Discriminant Analysis , 2004, BMVC.

[25]  Aleix M. Martínez,et al.  Where are linear feature extraction methods applicable? , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Aleix M. Martínez,et al.  Optimal Subclass Discovery for Discriminant Analysis , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[27]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[28]  R. Tibshirani,et al.  Flexible Discriminant Analysis by Optimal Scoring , 1994 .

[29]  Robert P. W. Duin,et al.  Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[31]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[32]  Hua Yu,et al.  A direct LDA algorithm for high-dimensional data - with application to face recognition , 2001, Pattern Recognit..

[33]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Bernt Schiele,et al.  Analyzing appearance and contour based methods for object categorization , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[35]  Rama Chellappa,et al.  Discriminant Analysis for Recognition of Human Face Images (Invited Paper) , 1997, AVBPA.

[36]  C. Radhakrishna Rao,et al.  Linear Statistical Inference and its Applications, Second Editon , 1973, Wiley Series in Probability and Statistics.