An iterative ADI-FDTD with reduced splitting error

We present a new iterative alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method. By recognizing the ADI-FDTD method as a special case of a more general iterative approach to solve the Crank-Nicolson (CN) FDTD scheme, the splitting error in ADI-FDTD can be reduced systematically. Numerical examples are used to illustrate the improved accuracy of this method.