A Bi-objective Model for Maximizing the Quality in Project Scheduling

Traditionally, the Resource Constrained Project Scheduling Problem (RCPSP) is investigated in the operations research literature from the makespan minimization perspective. However, a recent survey conducted in the United States revealed the surprizing fact that the majority of project planners consider maximization of the quality of project schedules as the most important objective (Icmeli Tukel and Rom, 1998). In this paper, the integration of quality in project scheduling is investigated. For that purpose, the problem is modeled as a bi-objective resource-constrained project scheduling problem. A new objective defined as the schedule robustness is introduced as a quality measure. The maximization of this objective is considered along with the makespan minimization. A tabu search algorithm is developped in order to generate an approximate set of efficient solutions. Several variants of the algorithm are tested and compared on a large set of benchmark problems. The results are analyzed using statistical design of experiments techniques.

[1]  Luiz Paulo Fávero,et al.  Design and Analysis of Experiments , 2001, Handbook of statistics.

[2]  Rainer Kolisch,et al.  Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem , 2000, Eur. J. Oper. Res..

[3]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..

[4]  Philippe Fortemps,et al.  Performance of the MOSA Method for the Bicriteria Assignment Problem , 2000, J. Heuristics.

[5]  Jacques Teghem,et al.  An interactive heuristic method for multi-objective combinatorial optimization , 2000, Comput. Oper. Res..

[6]  M. Wiecek,et al.  Dynamic programming approaches to the multiple criteria knapsack problem , 2000 .

[7]  Jorge Pinho de Sousa,et al.  Using metaheuristics in multiobjective resource constrained project scheduling , 2000, Eur. J. Oper. Res..

[8]  D. Chattopadhyay,et al.  A multiobjective operations planning model with unit commitment and transmission constraints , 1999 .

[9]  E. L. Ulungu,et al.  MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .

[10]  Sönke Hartmann,et al.  A competitive genetic algorithm for resource-constrained project scheduling , 1998 .

[11]  Andrzej Jaszkiewicz,et al.  Interactive analysis of multiple-criteria project scheduling problems , 1998, Eur. J. Oper. Res..

[12]  Erik Demeulemeester,et al.  Resource-constrained project scheduling: A survey of recent developments , 1998, Comput. Oper. Res..

[13]  Jacques Teghem,et al.  Two-phases Method and Branch and Bound Procedures to Solve the Bi–objective Knapsack Problem , 1998, J. Glob. Optim..

[14]  Walter O. Rom,et al.  Ensuring quality in resource constrained project scheduling , 1997 .

[15]  Erik Demeulemeester,et al.  New Benchmark Results for the Resource-Constrained Project Scheduling Problem , 1997 .

[16]  F. Glover,et al.  Tabu Search , 1997 .

[17]  W. Herroelen,et al.  Project network models with discounted cash flows a guided tour through recent developments , 1997, Eur. J. Oper. Res..

[18]  Rainer Kolisch,et al.  PSPLIB - A project scheduling problem library: OR Software - ORSEP Operations Research Software Exchange Program , 1997 .

[19]  James Gordon,et al.  Project Management and Project Network Techniques , 1995 .

[20]  A. Nagar,et al.  Multiple and bicriteria scheduling : A literature survey , 1995 .

[21]  Rainer Kolisch,et al.  Project Scheduling under Resource Constraints: Efficient Heuristics for Several Problem Classes , 1995 .

[22]  Horst W. Hamacher,et al.  On spanning tree problems with multiple objectives , 1994, Ann. Oper. Res..

[23]  E. L. Ulungu,et al.  Multi‐objective combinatorial optimization problems: A survey , 1994 .

[24]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[25]  P. Brucker,et al.  Tabu Search Algorithms and Lower Bounds for the Resource-Constrained Project Scheduling Problem , 1999 .

[26]  F. Abdelaziz,et al.  A Hybrid Heuristic for Multiobjective Knapsack Problems , 1999 .

[27]  Rolf H. Möhring,et al.  Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..

[28]  R. Kolisch,et al.  Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis , 1999 .

[29]  Walter O. Rom,et al.  Analysis of the characteristics of projects in diverse industries , 1998 .

[30]  Michael Pilegaard Hansen,et al.  Tabu Search for Multiobjective Optimization: MOTS , 1997 .

[31]  Yeong-Dae Kim,et al.  Search Heuristics for Resource Constrained Project Scheduling , 1996 .

[32]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[33]  Roman Slowinski,et al.  Multiobjective project scheduling under multiple-category resource constraint , 1989 .

[34]  Jacek Blazewicz,et al.  Scheduling under resource constraints - deterministic models , 1986 .

[35]  Jan Karel Lenstra,et al.  Scheduling subject to resource constraints: classification and complexity , 1983, Discret. Appl. Math..

[36]  Sidney Addelman Statistics for experimenters , 1978 .