Memory-guided microsaccades

Microsaccades are overwhelmingly described as involuntary eye movements. Here we show in both human subjects and monkeys that individual microsaccades of any direction can easily be triggered: (1) “on demand”, based on an arbitrary instruction, (2) without any special training, (3) without visual guidance by a stimulus, and (4) in a spatially and temporally accurate manner. Subjects voluntarily generated instructed “memory-guided” microsaccades readily, and similarly to how they made normal visually-guided ones. In two monkeys, we also observed midbrain superior colliculus neurons that exhibited movement-related activity bursts exclusively for memory-guided microsaccades, but not for similarly-sized visually-guided movements. Our results demonstrate behavioral and neural evidence for voluntary control over individual microsaccades, supporting recently discovered functional contributions of individual microsaccade generation to visual performance alterations and covert visual selection.

[1]  R H Wurtz,et al.  Organization of monkey superior colliculus: intermediate layer cells discharging before eye movements. , 1976, Journal of neurophysiology.

[2]  Ziad M. Hafed,et al.  A Microsaccadic Account of Attentional Capture and Inhibition of Return in Posner Cueing , 2016, Front. Syst. Neurosci..

[3]  Chih-Yang Chen,et al.  Sharper, stronger, faster upper visual field representation in primate superior colliculus , 2016 .

[4]  P. E. Hallett,et al.  Retinal eccentricity and the latency of eye saccades , 1994, Vision Research.

[5]  Ralf Engbert,et al.  Toward a model of microsaccade generation: the case of microsaccadic inhibition. , 2008, Journal of vision.

[6]  I. Nelken,et al.  Transient Induced Gamma-Band Response in EEG as a Manifestation of Miniature Saccades , 2008, Neuron.

[7]  T Moore,et al.  Shape representations and visual guidance of saccadic eye movements. , 1999, Science.

[8]  Ralf Engbert,et al.  Microsaccade dynamics during covert attention , 2005, Vision Research.

[9]  Ziad M. Hafed Mechanisms for generating and compensating for the smallest possible saccades , 2011, The European journal of neuroscience.

[10]  D. Kerzel Memory for the position of stationary objects: disentangling foveal bias and memory averaging , 2002, Vision Research.

[11]  Martina Poletti,et al.  Task-driven visual exploration at the foveal scale , 2019, Proceedings of the National Academy of Sciences.

[12]  Jadin C. Jackson,et al.  Quantitative measures of cluster quality for use in extracellular recordings , 2005, Neuroscience.

[13]  R. Steinman,et al.  The smallest voluntary saccade: implications for fixation. , 1973, Vision research.

[14]  Chih-Yang Chen,et al.  Orientation and Contrast Tuning Properties and Temporal Flicker Fusion Characteristics of Primate Superior Colliculus Neurons , 2018, Front. Neural Circuits.

[15]  D. Burr,et al.  Temporal Coding of Visual Space , 2018, Trends in Cognitive Sciences.

[16]  Ziad M Hafed,et al.  Human-level saccade detection performance using deep neural networks. , 2019, Journal of neurophysiology.

[17]  Cyrille Rossant,et al.  Spike sorting for large, dense electrode arrays , 2015 .

[18]  Ziad M Hafed,et al.  Superior colliculus inactivation alters the relationship between covert visual attention and microsaccades , 2013, The European journal of neuroscience.

[19]  Ziad M. Hafed,et al.  Similarity of superior colliculus involvement in microsaccade and saccade generation. , 2012, Journal of neurophysiology.

[20]  D. Sparks,et al.  Dissociation of visual and saccade-related responses in superior colliculus neurons. , 1980, Journal of neurophysiology.

[21]  U. Büttner,et al.  Fastigial oculomotor region and the control of foveation during fixation. , 2010, Journal of neurophysiology.

[22]  Yasushi Kobayashi,et al.  Fixational saccades reflect volitional action preparation. , 2013, Journal of neurophysiology.

[23]  Chih-Yang Chen,et al.  Postmicrosaccadic Enhancement of Slow Eye Movements , 2013, The Journal of Neuroscience.

[24]  Gunnar Blohm,et al.  Multisensory integration in orienting behavior: Pupil size, microsaccades, and saccades , 2017, Biological Psychology.

[25]  Mulugeta Semework,et al.  A spatial memory signal shows that the parietal cortex has access to a craniotopic representation of space , 2017, bioRxiv.

[26]  Ziad M. Hafed,et al.  Modulation of Microsaccades in Monkey during a Covert Visual Attention Task , 2011, The Journal of Neuroscience.

[27]  K. Shapiro,et al.  The contingent negative variation (CNV) event-related potential (ERP) predicts the attentional blink , 2008 .

[28]  Ziad M. Hafed,et al.  Microsaccadic Suppression of Visual Bursts in the Primate Superior Colliculus , 2010, Journal of Neuroscience.

[29]  Ziad M. Hafed,et al.  Vision, Perception, and Attention through the Lens of Microsaccades: Mechanisms and Implications , 2015, Front. Syst. Neurosci..

[30]  J. Braun,et al.  Rare but precious: Microsaccades are highly informative about attentional allocation , 2010, Vision Research.

[31]  Ziad M. Hafed,et al.  Sequential hemifield gating of α- and β-behavioral performance oscillations after microsaccades. , 2017, Journal of neurophysiology.

[32]  Daniel N Hill,et al.  Quality Metrics to Accompany Spike Sorting of Extracellular Signals , 2011, The Journal of Neuroscience.

[33]  Heiner Deubel,et al.  Attention allocation before antisaccades. , 2016, Journal of vision.

[34]  R. Steinman,et al.  Voluntary Control of Microsaccades during Maintained Monocular Fixation , 1967, Science.

[35]  Chih-Yang Chen,et al.  The Foveal Visual Representation of the Primate Superior Colliculus , 2019, Current Biology.

[36]  Ziad M Hafed,et al.  Peri-saccadic perceptual mislocalization is different for upward saccades , 2017, bioRxiv.

[37]  M. Ashburner,et al.  Shape Representations and Visual Guidance of Saccadic Eye Movements , 2022 .

[38]  Ziad M. Hafed,et al.  The transfer function of the rhesus macaque oculomotor system for small-amplitude slow motion trajectories , 2018, bioRxiv.

[39]  K. Cullen,et al.  Coding of Microsaccades in Three-Dimensional Space by Premotor Saccadic Neurons , 2012, The Journal of Neuroscience.

[40]  A. Fuchs,et al.  A method for measuring horizontal and vertical eye movement chronically in the monkey. , 1966, Journal of applied physiology.

[41]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[42]  A. Compte,et al.  Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory , 2014, Nature Neuroscience.

[43]  A. H. C. van der Heijden,et al.  Sources of position-perception error for small isolated targets , 1999, Psychological research.

[44]  Joaquín M. Fuster,et al.  Cortex and Memory: Emergence of a New Paradigm , 2009, Journal of Cognitive Neuroscience.

[45]  Ralf Engbert,et al.  Fixational eye movements predict the perceived direction of ambiguous apparent motion. , 2008, Journal of vision.

[46]  Chih-Yang Chen,et al.  Alteration of the microsaccadic velocity-amplitude main sequence relationship after visual transients: implications for models of saccade control. , 2017, Journal of neurophysiology.

[47]  Chih-Yang Chen,et al.  Sharper, Stronger, Faster Upper Visual Field Representation in Primate Superior Colliculus , 2016, Current Biology.

[48]  P. Smaglik,et al.  New Perspectives , 2011, Hormone Research in Paediatrics.

[49]  Ziad M. Hafed Alteration of Visual Perception prior to Microsaccades , 2013, Neuron.

[50]  Chih-Yang Chen,et al.  Spatial frequency sensitivity in macaque midbrain , 2018, Nature Communications.

[51]  Ziad M Hafed,et al.  The transfer function of the rhesus macaque oculomotor system for small-amplitude slow motion trajectories , 2018, bioRxiv.

[52]  Todd M. Herrington,et al.  The Effect of Microsaccades on the Correlation between Neural Activity and Behavior in Middle Temporal, Ventral Intraparietal, and Lateral Intraparietal Areas , 2009, The Journal of Neuroscience.

[53]  Peter W Dicke,et al.  Microsaccade Control Signals in the Cerebellum , 2015, The Journal of Neuroscience.

[54]  Reinhold Kliegl,et al.  Microsaccadic modulation of response times in spatial attention tasks , 2009, Psychological research.

[55]  Ralf Engbert Microsaccades: A microcosm for research on oculomotor control, attention, and visual perception. , 2006, Progress in brain research.

[56]  R. Vautin,et al.  Magnification factor and receptive field size in foveal striate cortex of the monkey , 2004, Experimental Brain Research.

[57]  D Wyman,et al.  Letter: Latency characteristics of small saccades. , 1973, Vision research.

[58]  Ziad M Hafed,et al.  A Causal Role for the Cortical Frontal Eye Fields in Microsaccade Deployment , 2016, PLoS biology.

[59]  Shinsuke Shimojo,et al.  Compression of space in visual memory , 2001, Vision Research.

[60]  B. Richmond,et al.  Implantation of magnetic search coils for measurement of eye position: An improved method , 1980, Vision Research.

[61]  Martin Rolfs,et al.  Oculomotor inhibition covaries with conscious detection. , 2016, Journal of neurophysiology.

[62]  Ralf Engbert,et al.  Microsaccades uncover the orientation of covert attention , 2003, Vision Research.

[63]  Chih-Yang Chen,et al.  Alteration of the microsaccadic velocity-amplitude main sequence relationship after visual transients: implications for models of saccade control , 2017 .

[64]  Sammi R. Chekroud,et al.  Human gaze tracks attentional focusing in memorized visual space , 2019, Nature Human Behaviour.

[65]  Mathias Allemand,et al.  Mechanisms and Implications , 2013 .

[66]  James Elliott,et al.  Rapid reconfiguration reduces the attentional blink , 2010 .

[67]  Kenneth D Harris,et al.  Spike sorting for large, dense electrode arrays , 2015, Nature Neuroscience.

[68]  Martina Poletti,et al.  Microscopic Eye Movements Compensate for Nonhomogeneous Vision within the Fovea , 2013, Current Biology.

[69]  R. Krauzlis The Control of Voluntary Eye Movements: New Perspectives , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[70]  Ziad M. Hafed,et al.  A Neural Mechanism for Microsaccade Generation in the Primate Superior Colliculus , 2009, Science.

[71]  Kenji Kawano,et al.  Neurons in cortical area MST remap the memory trace of visual motion across saccadic eye movements , 2014, Proceedings of the National Academy of Sciences.

[72]  M E Goldberg,et al.  Dependence of saccade-related activity in the primate superior colliculus on visual target presence. , 2001, Journal of neurophysiology.

[73]  Ziad M. Hafed,et al.  Neuronal Response Gain Enhancement prior to Microsaccades , 2015, Current Biology.

[74]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[75]  A. A. Skavenski,et al.  Miniature eye movement. , 1973, Science.

[76]  James J. Clark,et al.  Microsaccades as an overt measure of covert attention shifts , 2002, Vision Research.

[77]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. , 1983, Journal of neurophysiology.

[78]  Ziad M. Hafed,et al.  A neural locus for spatial-frequency specific saccadic suppression in visual-motor neurons of the primate superior colliculus. , 2017, Journal of neurophysiology.

[79]  S. Martinez-Conde,et al.  The impact of microsaccades on vision: towards a unified theory of saccadic function , 2013, Nature Reviews Neuroscience.

[80]  Ziad M Hafed,et al.  Dynamics of fixational eye position and microsaccades during spatial cueing: the case of express microsaccades. , 2018, Journal of neurophysiology.

[81]  Yasushi Kobayashi,et al.  Fixational saccades alter the gap effect , 2014, The European journal of neuroscience.

[82]  David L. Sparks,et al.  Systematic errors for saccades to remembered targets: Evidence for a dissociation between saccade metrics and activity in the superior colliculus , 1994, Vision Research.

[83]  Steeve Zozor,et al.  Microsaccades are modulated by both attentional demands of a visual discrimination task and background noise. , 2013, Journal of vision.

[84]  M. Rucci,et al.  Microsaccades Precisely Relocate Gaze in a High Visual Acuity Task , 2010, Nature Neuroscience.

[85]  Ziad M. Hafed,et al.  On the Dissociation between Microsaccade Rate and Direction after Peripheral Cues: Microsaccadic Inhibition Revisited , 2013, The Journal of Neuroscience.

[86]  M. Rolfs Microsaccades: Small steps on a long way , 2009, Vision Research.