A chromosome-level genome sequence of a model chrysanthemum: evolution and reference for hexaploid cultivated chrysanthemum

Chrysanthemums are one of the most industrially important cut flowers worldwide. However, their segmental allopolyploidy and self-incompatibility have prevented the application of genetic analysis and modern breeding strategies. We thus developed a model strain, Gojo-0 (Chrysanthemum seticuspe), which is a diploid and self-compatible pure line. Here, we present the 3.05 Gb chromosome-level reference genome sequence, which covered 97% of the C. seticuspe genome. The genome contained more than 80% interspread repeats, of which retrotransposons accounted for 72%. We identified recent segmental duplication and retrotransposon expansion in C. seticuspe, contributing to a relatively large genome size. Furthermore, we identified aretrotransposon, SbdRT, which was enriched in gene-dense genome regions and had experienced a very recent transposition burst. We also demonstrated that the chromosome-level genome sequence facilitates positional cloning in C. seticuspe. The genome sequence obtained here can greatly contribute as a reference for chrysanthemum in front-line breeding including genome editing.

[1]  J. Wen,et al.  Origins of cultivars of Chrysanthemum—Evidence from the chloroplast genome and nuclear LFY gene , 2020, Journal of Systematics and Evolution.

[2]  Silvio C. E. Tosatto,et al.  Pfam: The protein families database in 2021 , 2020, Nucleic Acids Res..

[3]  Mario Stanke,et al.  BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database , 2020, bioRxiv.

[4]  Carl Gutwin,et al.  Interactive Exploration of Genomic Conservation , 2020, Graphics Interface.

[5]  Hengchao Wang,et al.  Mikania micrantha genome provides insights into the molecular mechanism of rapid growth , 2020, Nature Communications.

[6]  Martin Laforest,et al.  A Chromosome-Scale Draft Sequence of the Canada Fleabane Genome. , 2020, Pest management science.

[7]  H. Satake,et al.  Draft genome of Tanacetum cinerariifolium, the natural source of mosquito coil , 2019, Scientific Reports.

[8]  Andrew G. Clark,et al.  RepeatModeler2: automated genomic discovery of transposable element families , 2019, bioRxiv.

[9]  Sumei Chen,et al.  Current achievements and future prospects in the genetic breeding of chrysanthemum: a review , 2019, Horticulture Research.

[10]  Steven L Salzberg,et al.  Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype , 2019, Nature Biotechnology.

[11]  S. Isobe,et al.  A pure line derived from a self-compatible Chrysanthemum seticuspe mutant as a model strain in the genus Chrysanthemum. , 2019, Plant science : an international journal of experimental plant biology.

[12]  Bei Gao,et al.  Ancient duplications and grass-specific transposition influenced the evolution of LEAFY transcription factor genes , 2019, Communications Biology.

[13]  Rebecca B. Dikow,et al.  A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae , 2019, Proceedings of the National Academy of Sciences.

[14]  Qixiang Zhang,et al.  Characterization and Development of EST-SSR Markers from Transcriptome Sequences of Chrysanthemum (Chrysanthemum ×morifolium Ramat.) , 2019, HortScience.

[15]  T. Itoh,et al.  Platanus-allee is a de novo haplotype assembler enabling a comprehensive access to divergent heterozygous regions , 2019, Nature Communications.

[16]  Y. Nakano,et al.  Chrysanthemum requires short-day repeats for anthesis: Gradual CsFTL3 induction through a feedback loop under short-day conditions. , 2019, Plant science : an international journal of experimental plant biology.

[17]  S. Isobe,et al.  De novo whole-genome assembly in Chrysanthemum seticuspe, a model species of Chrysanthemums, and its application to genetic and gene discovery analysis , 2019, DNA research : an international journal for rapid publication of reports on genes and genomes.

[18]  J. Macas,et al.  Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification , 2019, Mobile DNA.

[19]  Shilin Chen,et al.  The Chrysanthemum nankingense Genome Provides Insights into the Evolution and Diversification of Chrysanthemum Flowers and Medicinal Traits. , 2018, Molecular plant.

[20]  M. Liu,et al.  The Genome of Artemisia annua Provides Insight into the Evolution of Asteraceae Family and Artemisinin Biosynthesis. , 2018, Molecular plant.

[21]  Yu Lin,et al.  Assembly of long, error-prone reads using repeat graphs , 2018, Nature Biotechnology.

[22]  Kazutaka Katoh,et al.  MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization , 2017, Briefings Bioinform..

[23]  R. Visser,et al.  An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis , 2017, Theoretical and Applied Genetics.

[24]  R. Visser,et al.  Conclusive evidence for hexasomic inheritance in chrysanthemum based on analysis of a 183 k SNP array , 2017, BMC Genomics.

[25]  P. Heslop-Harrison,et al.  Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants , 2017, Annals of botany.

[26]  Han Fang,et al.  GenomeScope: Fast reference-free genome profiling from short reads , 2016, bioRxiv.

[27]  Sudhir Kumar,et al.  TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. , 2017, Molecular biology and evolution.

[28]  L. Rieseberg,et al.  The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution , 2017, Nature.

[29]  Xun Xu,et al.  Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce , 2017, Nature Communications.

[30]  Rob Patro,et al.  Salmon provides fast and bias-aware quantification of transcript expression , 2017, Nature Methods.

[31]  Qixiang Zhang,et al.  Identification and Characterization of CYC-Like Genes in Regulation of Ray Floret Development in Chrysanthemum morifolium , 2016, Front. Plant Sci..

[32]  F. Thibaud-Nissen,et al.  Araport11: a complete reannotation of the Arabidopsis thaliana reference genome , 2016, bioRxiv.

[33]  L. Rieseberg,et al.  The genome sequence of the outbreeding globe artichoke constructed de novo incorporating a phase-aware low-pass sequencing strategy of F1 progeny , 2016, Scientific Reports.

[34]  Yan-Ping Guo,et al.  Behind the diversity: Ontogenies of radiate, disciform, and discoid capitula of Chrysanthemum and its allies , 2015 .

[35]  O. Kohany,et al.  Repbase Update, a database of repetitive elements in eukaryotic genomes , 2015, Mobile DNA.

[36]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[37]  Chao Xie,et al.  Fast and sensitive protein alignment using DIAMOND , 2014, Nature Methods.

[38]  T. Debener,et al.  The type of ploidy of chrysanthemum is not black or white: a comparison of a molecular approach to published cytological methods , 2014, Front. Plant Sci..

[39]  Jayarama,et al.  The coffee genome provides insight into the convergent evolution of caffeine biosynthesis , 2014, Science.

[40]  M. Hayashi,et al.  Activation of an Endogenous Retrotransposon Associated with Epigenetic Changes in Lotus japonicus: A Tool for Functional Genomics in Legumes , 2013 .

[41]  Damon Lisch,et al.  How important are transposons for plant evolution? , 2012, Nature Reviews Genetics.

[42]  T. Teeri,et al.  Evolution and diversification of the CYC/TB1 gene family in Asteraceae--a comparative study in Gerbera (Mutisieae) and sunflower (Heliantheae). , 2012, Molecular biology and evolution.

[43]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[44]  S. Knapp,et al.  Genetic Analysis of Floral Symmetry in Van Gogh's Sunflowers Reveals Independent Recruitment of CYCLOIDEA Genes in the Asteraceae , 2012, PLoS genetics.

[45]  A. Oda,et al.  CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums , 2011, Journal of experimental botany.

[46]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[47]  Carl Kingsford,et al.  A fast, lock-free approach for efficient parallel counting of occurrences of k-mers , 2011, Bioinform..

[48]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[49]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[50]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[51]  G. Rao,et al.  Chrysanthemum genetic resources and related genera of Chrysanthemum collected in China , 2009, Genetic Resources and Crop Evolution.

[52]  E. Coen,et al.  Regulatory Genes Control a Key Morphological and Ecological Trait Transferred Between Species , 2008, Science.

[53]  Stefan Kurtz,et al.  LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons , 2008, BMC Bioinformatics.

[54]  F. Myouga,et al.  An Arabidopsis homolog of the bacterial peptidoglycan synthesis enzyme MurE has an essential role in chloroplast development. , 2007, The Plant journal : for cell and molecular biology.

[55]  J. Poulain,et al.  The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla , 2007, Nature.

[56]  E. Kramer,et al.  Evolutionary dynamics of genes controlling floral development. , 2005, Current opinion in plant biology.

[57]  D. Weigel,et al.  LEAFY controls floral meristem identity in Arabidopsis , 1992, Cell.

[58]  R. C. Macridis A review , 1963 .

[59]  G. J. Dowrick The chromosomes of Chrysanthemum, , 1953, Heredity.

[60]  Mosè Manni,et al.  BUSCO: Assessing Genome Assembly and Annotation Completeness. , 2019, Methods in molecular biology.

[61]  V. Funk,et al.  Classification of Compositae , 2009 .

[62]  G. Petersen,et al.  A unified classification system for eukaryotic transposable elements should reflect their phylogeny , 2009, Nature Reviews Genetics.

[63]  P. Ascher,et al.  Genetic studies of self incompatibility in the garden chrysanthemum, Chrysanthemum morifolium ramat , 2004, Theoretical and Applied Genetics.

[64]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .

[65]  M. Tahara Cytological Studies on Chrysanthemum , 1915 .