Investigation of nitric oxide and Ar annealed SiO2/SiC interfaces by x-ray photoelectron spectroscopy

Silicon dioxide (SiO2)/silicon carbide (SiC) structures annealed in nitric oxide (NO) and argon gas ambiences were investigated using x-ray photoelectron spectroscopy (XPS). The XPS depth profile analysis shows a nitrogen pileup of 1.6 at. % close to the NO annealed SiO2/SiC interface. The results of Si 2p, C 1s, O 1s, and N 1s core-level spectra are presented in detail to demonstrate significant differences between NO and Ar annealed samples. A SiO2/SiC interface with complex intermediate oxide/carbon states is found in the case of the Ar annealed sample, while the NO annealed SiO2/SiC interface is free of these compounds. The Si 2p spectrum of the Ar annealed sample is much broader than that of the NO annealed sample and can be fitted with three peaks compared with the two peaks in the NO annealed sample, indicating a more complex interface in the Ar annealed sample. Also the O 1s spectrum of the NO annealed samples is narrow and symmetrical and can be fitted with only one peak whereas that of the Ar an...

[1]  H. B. Harrison,et al.  INTERFACIAL CHARACTERISTICS OF N2O AND NO NITRIDED SIO2 GROWN ON SIC BY RAPID THERMAL PROCESSING , 1997 .

[2]  J. Robertson,et al.  Theory of defects in vitreous silicon dioxide , 1983 .

[3]  I. P. Batra,et al.  Chemisorption of Atomic Oxygen on Si(100): Self-Consistent Cluster and Slab Model Investigations , 1984 .

[4]  J. H. Thomas,et al.  An XPS study of the influence of ion sputtering on bonding in thermally grown silicon dioxide , 1983 .

[5]  A. Rys,et al.  Modeling and Characterization of Thermally Oxidized 6H Silicon Carbide , 1995 .

[6]  B. Wood,et al.  A comparison of experimental and theoretically derived sensitivity factors for XPS , 1992 .

[7]  P. Friedrichs,et al.  INTERFACE PROPERTIES OF METAL-OXIDE-SEMICONDUCTOR STRUCTURES ON N-TYPE 6H AND 4H-SIC , 1996 .

[8]  E. H. Nicollian,et al.  Mos (Metal Oxide Semiconductor) Physics and Technology , 1982 .

[9]  Umbach,et al.  Initial stages of oxygen adsorption on Si(111): The stable state. , 1989, Physical review. B, Condensed matter.

[10]  S. Lefrant,et al.  XPS study of SiO thin films and SiO-metal interfaces , 1989 .

[11]  Andre Stesmans,et al.  Elimination of SiC/SiO2 interface states by preoxidation ultraviolet‐ozone cleaning , 1996 .

[12]  H. B. Harrison,et al.  SIMS analysis of nitrided oxides grown on 4H-SiC , 1999 .

[13]  Michael R. Melloch,et al.  Characterization and optimization of the SiO2/SiC metal-oxide semiconductor interface , 1995 .

[14]  Ze‐Qiang Yao,et al.  The nature and distribution of nitrogen in silicon oxynitride grown on silicon in a nitric oxide ambient , 1995 .

[15]  C. Pantano,et al.  Silicon oxycarbide formation on SiC surfaces and at the SiC/SiO2 interface , 1997 .

[16]  M. Bozack,et al.  Surface Studies on SiC as Related to Contacts , 1997 .

[17]  J. Halbritter,et al.  ARXPS studies of SiO_2-SiC interfaces and oxidation of 6H SiC single crystal Si-(001) and C-(001) surfaces , 1994 .

[18]  Leonard C. Feldman,et al.  Fundamentals of Surface and Thin Film Analysis , 1986 .

[19]  Sergio A. Ajuria,et al.  Growth and surface chemistry of oxynitride gate dielectric using nitric oxide , 1995 .

[20]  M. Seah,et al.  Practical Surface Analysis , 1992 .

[21]  P. Neudeck,et al.  Measurement of n‐type dry thermally oxidized 6H‐SiC metal‐oxide‐semiconductor diodes by quasistatic and high‐frequency capacitance versus voltage and capacitance transient techniques , 1994 .

[22]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[23]  W. J. Choyke,et al.  Comparative electron spectroscopic studies of surface segregation on SiC(0001) and SiC(0001̄) , 1986 .

[24]  Jean-Christophe Charlier,et al.  Nitrogen incorporation at Si(001)-SiO2 interfaces: Relation between N 1s core-level shifts and microscopic structure , 1997 .

[25]  J. A. Taylor,et al.  Further examination of the Si KLL Auger line in silicon nitride thin films , 1981 .

[26]  H. B. Harrison,et al.  Nitridation of silicon-dioxide films grown on 6H silicon carbide , 1997, IEEE Electron Device Letters.

[27]  Andre Stesmans,et al.  Observation of Carbon Clusters at the 4H-SiC/SiO2 Interface , 1997 .

[28]  W. J. Choyke,et al.  Comparative oxidation studies of SiC(0001̄) and SiC(0001) surfaces , 1986 .

[29]  D. Alok,et al.  Electrical properties of thermal oxide grown on n‐type 6H‐silicon carbide , 1994 .

[30]  T. Ouisse,et al.  Low‐frequency, high‐temperature conductance and capacitance measurements on metal‐oxide‐silicon carbide capacitors , 1994 .

[31]  J. Cooper,et al.  Interfacial differences between SiO2 grown on 6H-SiC and on Si(100) , 1999 .

[32]  H. B. Harrison,et al.  High quality ultrathin dielectric films grown on silicon in a nitric oxide ambient , 1994 .

[33]  Anupam Madhukar,et al.  High-Resolution X-Ray Photoelectron Spectroscopy as a Probe of Local Atomic Structure: Application to Amorphous Si O 2 and the Si-Si O 2 Interface , 1979 .

[34]  Sergio A. Ajuria,et al.  Furnace formation of silicon oxynitride thin dielectrics in nitrous oxide (N2O): The role of nitric oxide (NO) , 1994 .

[35]  H. Matsunami,et al.  Thermal Oxidation of SiC and Electrical Properties of Al–SiO2–SiC MOS Structure , 1982 .

[36]  H. B. Harrison,et al.  Improved reliability of NO-nitrided SiO2 grown on p-type 4H-SiC , 1998, IEEE Electron Device Letters.

[37]  V. Afanas’ev,et al.  Intrinsic SiC/SiO2 Interface States , 1997 .

[38]  John W. Palmour,et al.  Improved oxidation procedures for reduced SiO2/SiC defects , 1996 .

[39]  J. Palmour,et al.  SiC MOS interface characteristics , 1994 .

[40]  B. Zhang,et al.  Nitrogen-induced modifications in microstructure and wear durability of ultrathin amorphous-carbon films , 1998 .

[41]  R. E. Tressler,et al.  Oxidation of Single‐Crystal Silicon Carbide Part I . Experimental Studies , 1990 .