Comparison Techniques for Random Walk on Finite Groups

[1]  M THEORE,et al.  Moderate Growth and Random Walk on Finite Groups , 1994 .

[2]  Madhav P. Desai,et al.  On the convergence of reversible Markov chains , 1993 .

[3]  P. Diaconis,et al.  COMPARISON THEOREMS FOR REVERSIBLE MARKOV CHAINS , 1993 .

[4]  Richard Stong,et al.  Choosing a random spanning subtree: a case study , 1991 .

[5]  A. Gangolli,et al.  Convergence bounds for Markov chains and applications to sampling , 1991 .

[6]  Bojan Mohar,et al.  Eigenvalues, diameter, and mean distance in graphs , 1991, Graphs Comb..

[7]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[8]  J. A. Fill Eigenvalue bounds on convergence to stationarity for nonreversible markov chains , 1991 .

[9]  László Babai,et al.  Local expansion of vertex-transitive graphs and random generation in finite groups , 1991, STOC '91.

[10]  Gábor Hetyei,et al.  On the diameter of finite groups , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[11]  László Babai,et al.  Small-diameter Cayley Graphs for Finite Simple Groups , 1989, Eur. J. Comb..

[12]  D. Aldous Hitting times for random walks on vertex-transitive graphs , 1989, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  P. Diaconis Group representations in probability and statistics , 1988 .

[14]  Persi Diaconis,et al.  Applications of non-commutative fourier analysis to probability problems , 1988 .

[15]  James R. Driscoll,et al.  Computing Short Generator Sequences , 1987, Inf. Comput..

[16]  P. Diaconis,et al.  Time to reach stationarity in the Bernoulli-Laplace diffusion model , 1987 .

[17]  D. Aldous On the Markov Chain Simulation Method for Uniform Combinatorial Distributions and Simulated Annealing , 1987, Probability in the Engineering and Informational Sciences.

[18]  A. Odlyzko,et al.  Random Shuffles and Group Representations , 1985 .

[19]  P. Diaconis,et al.  Generating a random permutation with random transpositions , 1981 .

[20]  F. Beaufils,et al.  FRANCE , 1979, The Lancet.

[21]  Émile Borel,et al.  Théorie mathématique du bridge : à la portée de tous , 1940 .