A quasi-Newton type method for equilibrium problems

In this work, we develop a quasi-Newton-type method for equilibrium problems based on the proximal Newton-type structure given in Santos et al. (Optimization Letters 12(5), 997-1009, 2018). We consider a family of matrices verifying a bounded deterioration property. We prove that the sequence generated by the algorithm is well defined and under suitable assumptions we establish the linear convergence of the algorithm. Numerical experiments are reported.

[1]  Aviv Gibali,et al.  Gradient projection-type algorithms for solving equilibrium problems and its applications , 2019, Comput. Appl. Math..

[2]  C. Kanzow,et al.  Relaxation Methods for Generalized Nash Equilibrium Problems with Inexact Line Search , 2009 .

[3]  Susana Scheimberg,et al.  An inexact subgradient algorithm for Equilibrium Problems , 2011 .

[4]  Dang Van Hieu,et al.  New inertial algorithm for a class of equilibrium problems , 2017, Numerical Algorithms.

[5]  S. Scheimberg,et al.  A relaxed projection method for finite-dimensional equilibrium problems , 2011 .

[6]  Paulo Roberto Oliveira,et al.  A Tikhonov-type regularization for equilibrium problems in Hilbert spaces , 2013 .

[7]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[8]  A. Iusem,et al.  New existence results for equilibrium problems , 2003 .

[9]  A. Iusem,et al.  On the proximal point method for equilibrium problems in Hilbert spaces , 2010 .

[10]  Susana Scheimberg,et al.  A Two-Phase Algorithm for a Variational Inequality Formulation of Equilibrium Problems , 2013, J. Optim. Theory Appl..

[11]  L. Luksan,et al.  New quasi-Newton method for solving systems of nonlinear equations , 2017 .

[12]  Nguyen The Vinh,et al.  Vector Quasi-Equilibrium Problems for the Sum of Two Multivalued Mappings , 2016, J. Optim. Theory Appl..

[13]  Masao Fukushima,et al.  Newton’s method for computing a normalized equilibrium in the generalized Nash game through fixed point formulation , 2012, Math. Program..

[14]  Phan Tu Vuong,et al.  The Glowinski–Le Tallec splitting method revisited in the framework of equilibrium problems in Hilbert spaces , 2018, J. Glob. Optim..

[15]  J. J. Moré,et al.  Quasi-Newton Methods, Motivation and Theory , 1974 .

[16]  Mauro Passacantando,et al.  Descent and Penalization Techniques for Equilibrium Problems with Nonlinear Constraints , 2015, J. Optim. Theory Appl..

[17]  Mostafa Nasri,et al.  Implementation of Augmented Lagrangian Methods for Equilibrium Problems , 2016, J. Optim. Theory Appl..

[18]  Susana Scheimberg,et al.  A proximal Newton-type method for equilibrium problems , 2018, Optim. Lett..

[19]  Alfredo N. Iusem,et al.  On certain conditions for the existence of solutions of equilibrium problems , 2008, Math. Program..

[20]  Csaba Farkas,et al.  A Generalized Variational Principle and Its Application to Equilibrium Problems , 2013, J. Optim. Theory Appl..