17O and 31P NMR of aroylphosphanes, aroylsilanes and aroylphosphonates: Absence of resonance in —COPR2 groups (NMR of terminal oxygen, part 5 )

The 17O NMR spectra for aryl‐substituted P,P‐diphenylbenzoylphosphanes (p‐YC6H4COPPh2, 1), trimethylbenzoylsilanes (p‐YC6H4COSiMe3, 2) and dialkyl benzoylphosphonates (p‐YC6H4COPO(OR)2, 3) were recorded. Compounds 1, 2 and 3 show a similar high substituent sensitivity (p+), indicating a strong electron demand of the carbonyl group; as resonance stabilization is not possible in 2 and 3 it is concluded that electron donation from P to carbonyl is equally negligible in 1. The carbonyl oxygen signals of 1, 3 and, in particular, 2 appear at low field. The 31P NMR shifts of 1 were also measured; they are less sensitive to the ring substituents.

[1]  P. Péchy,et al.  17O NMR Spectroscopy of Benzoyl Compounds YC6H4COX: Sensitivity to Ring Substituents as a Measure of the Electron Demand of the Carbonyl Group , 1990 .

[2]  H. Dahn,et al.  17O‐NMR‐Spektroskopie von Benzoylverbindungen YC6H4 COX: Empfindlichkeit auf Substituenteneinflüsse als Maß für den Elektronenmangel an der Carbonylgruppe , 1990 .

[3]  I. Al-Najjar,et al.  29Si and 13C NMR spectra of alkenyl‐ and alkynyl‐trimethylsilanes , 1989 .

[4]  H. Duddeck,et al.  17O NMR Spectra of 1‐adamantylphosphoryl derivatives , 1985 .

[5]  W. Kutzelnigg Chemical Bonding in Higher Main Group Elements , 1984 .

[6]  W. Kutzelnigg Die chemische Bindung bei den höheren Hauptgruppenelementen , 1984 .

[7]  D. Craik,et al.  Ab initio MO calculations and 17O NMR at natural abundance of para‐substituted acetophenones , 1983 .

[8]  E. Lindner,et al.  Untersuchungen über elektronische Einflüsse auf die Reaktivität von Aroyl‐ und Acyldiphenylphosphanen und deren Folgeprodukte , 1983 .

[9]  N. Plavac,et al.  Carbon-13 and silicon-29 chemical shifts and coupling constants involving tris(trimethylsilyl)silyl systems , 1982 .

[10]  G. Olah,et al.  Stable carbocations. Part 236. A carbon-13 and silicon-29 NMR spectroscopic study of .alpha.- and .beta.-(trimethylsilyl)-substituted carbocations , 1982 .

[11]  M. Sekine,et al.  Acylphosphonates: phosphorus-carbon bond cleavage of dialkyl acylphosphonates by means of amines. Substituent and solvent effects for acylation of amines , 1980 .

[12]  J. Picard,et al.  Reductive silylation of benzoates: convenient synthesis of aroylsilanes , 1979 .

[13]  S. Grim,et al.  ON THE PHOSPHORUS-31 CHEMICAL SHIFTS OF SUBSTITUTED TRIARYLPHOSPHINES , 1977 .

[14]  G. C. Levy,et al.  13C fourier-transform NMR study of trimethyl(phenylethynyl)silane: Silicon-carbon bonding☆ , 1972 .

[15]  M. Braun,et al.  Umsetzungen von säurechloriden mit trimethylsilyldiphenylphosphin , 1972 .

[16]  A. Brook Keto Derivatives of Group IV Organometalloids , 1969 .

[17]  L. W. Reeves,et al.  Chemical shifts for compounds of the group IV elements silicon and tin , 1968 .

[18]  R. G. Kostyanovsky,et al.  Hindered lone pair conjugation in the Vth group elements—I , 1968 .

[19]  W. Mcfarlane,et al.  Group contributions to phosphorus-31 chemical shifts of tertiary phosphines , 1967 .

[20]  E. J. Corey,et al.  Synthesis of α-Silyl Ketones via 1,3-Dithianes , 1967 .

[21]  K. Berlin,et al.  The Reactions of Aroyl Halides with Phosphites. Esters of Aroylphosphonic Acids , 1964 .

[22]  P. Diehl,et al.  Chemische Verschiebungen in der kernmagnetischen Resonanz von 17O in organischen Verbindungen , 1961 .

[23]  K. Ǐssleib,et al.  Alkali‐Phosphorverbindungen und ihr reaktives Verhalten, IV. Darstellung und Charakterisierung disubstituierter Säurephosphide , 1959 .