Automated Polygon Generalization in a Multi Agent System

Polygonal subdivisions, i.e. the representation of categorical data in the vector model, are a common data type in GIS applications, in thematic maps, in topographic maps and in digital landscape models. Their cartographic generalization is termed polygon generalization. Cartographic generalization or generalization is one of the basic principles of cartography, namely the legible and comprehensible visualization of geographic data at a certain scale and for a given purpose. For the generalization of polygonal subdivisions, a multitude of methods, such as generalization algorithms, measures and generalization constraints, were in the past proposed in isolation from each other. However, what is missing is a comprehensive framework for the orchestration of these tools, that is, their integration into an automated and comprehensive generalization process. Hence, this thesis studies the automation of polygon generalization by means of a multi-agent system (MAS). In doing so, the work extends previous research carried out by the AGENT consortium (i.e. by a consortium of Institut Géographique National France, University of Edinburgh, University of Zurich, Institut National Polytechnique de Grenoble and Laser-Scan Ltd.). In this thesis, a discussion of possible approaches to automated generalization leads to the proposal of a framework for comprehensive, automated and agent-based polygon generalization. MAS technology together with the concepts developed by the AGENT consortium offer distinct benefits for the automation of map generalization. These benefits include the capabilities 1) to compromise between different generalization constraints associated with a cartographic object, 2) to coordinate the generalization of objects at different spatial levels and 3) to model holistic decision making in map generalization. After listing the generic properties of agents spatial levels of polygon generalization are identified, namely map, group, polygon and line. Each of them is linked to a specific agent type. Both the process of polygon generalization based on a multi agent system as well as the evolution of an agent during the generalization process are discussed theoretically. Next, a worked example clarifies and illustrates the concepts and methods embedded in the proposed framework. Prior to the implementation of the framework generalization algorithms that make use of energy minimization techniques and generalization constraints for polygon generalization are studied. Algorithms are essential to the conflict resolution while constraints control the agentbased generalization process. The application of an energy minimizing technique, snakes, is investigated for resolving size conflicts (i.e. a polygon too small with respect to the target scale) and proximity conflicts (i.e. polygons are too close to each other) in polygonal subdivisions. The usage of a single snakes-based algorithm is proposed, which can be controlled in such a way that it achieves the displacement, enlargement and exaggeration of polygons or an arbitrary combination of these operations. Thus, size and proximity conflicts within a group of polygons can be solved simultaneously, that is, a holistic solution of such conflicts is accomplished. Moreover, the proposed algorithm enables the direct integration of the update of the neighbors of a modified polygon into the transformation process. The main drawbacks identified are the difficult setup and fine-tuning of snakes parameters and the computational resources required by the algorithm. However, the experiments emphasize that the algorithm constitutes an improvement in comparison to existing algorithms for resolving size and proximity conflicts as well as to sequential approaches of propagation. The computational

[1]  C. Plazanet Enrichissement des bases de données géographiques : analyse de la géométrie des objets linéaires pour la généralisation cartographique (application aux routes) , 1996 .

[2]  Robert B McMaster,et al.  A Statistical Analysis of Mathematical Measures for Linear Simplification , 1986 .

[3]  Martin Galanda,et al.  Optimization techniques for polygon generalization , 2001 .

[4]  Tumasch Reichenbacher SVG for adaptive visualisations in mobile situations , 2002 .

[5]  R. McMaster,et al.  Map Generalization: Making Rules for Knowledge Representation , 1991 .

[6]  J. Miiller,et al.  Generalization : state of the art and issues , 1995 .

[7]  W. Mackaness,et al.  The application of agents in automated map generalization , 1999 .

[8]  William M. K. Trochim,et al.  Research methods knowledge base , 2001 .

[9]  Tiina Kilpeläinen,et al.  Knowledge Acquisition for Generalization Rules , 2000 .

[10]  Liu Yanfang,et al.  Spatial object aggregation based on data structure, local triangulation and hierarchical analyzing method , 2002 .

[11]  Herbert Freeman,et al.  A rule-based system for dense-map name placement , 1992, CACM.

[12]  William Mackaness,et al.  Self Evaluating Generalisation Algorithms to Automatically Derive Multi Scale Boundary Sets , 1998 .

[13]  William Mackaness,et al.  Are Cartographic Expert Systems Possible , 1987 .

[14]  Zhilin Li Mathematical Morphology in Digital Generalization of Raster Map Data , 1994 .

[15]  M. Molenaar,et al.  The role of topologic and hierarchical spatial object models in database generalization. , 1996 .

[16]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[17]  S. Mustière Apprentissage supervise pour la generalisation cartographique , 2001 .

[18]  M. J. Kraak,et al.  Semantic similarity evaluation model in categorical database generalisation , 2002 .

[19]  Robert Weibel,et al.  Generalization of Spatial Data: Principles and Selected Algorithms , 1996, Algorithmic Foundations of Geographic Information Systems.

[20]  Robert Weibel,et al.  A review and conceptual framework of automated map generalization , 1988, Int. J. Geogr. Inf. Sci..

[21]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[22]  Lars Harrie,et al.  The Constraint Method for Solving Spatial Conflicts in Cartographic Generalization , 1999 .

[23]  M. V. Kreveld,et al.  Topologically correct subdivision simplification using the bandwidth criterion , 1998 .

[24]  M. Laszlo Computational Geometry and Computer Graphics in C , 1995 .

[25]  P. Højholt Solving Space Conflicts in Map Generalization: Using a Finite Element Method , 2000 .

[26]  Robert B Mc Master,et al.  Generalization in Digital Cartography Resource Publications in Geography , 1992 .

[27]  Phillip C. Muehrcke Map use: Reading, analysis, and interpretation , 1983 .

[28]  D. Eppstein,et al.  MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .

[29]  Robin Fuller,et al.  A technique for the removal of outliers during a computerised map generalisation process , 1996 .

[30]  Robert Weibel,et al.  Integrating multi agent, object oriented and algorithmic techniques for improved automoated map generalisation , 2001 .

[31]  B. Moulin,et al.  WHAT IS SPATIAL CONTEXT IN CARTOGRAPHIC GENERALISATION , 2002 .

[32]  Yves Demazeau,et al.  SIGMA: Application of Multi-Agent Systems to Cartographic Generalization , 1996, MAAMAW.

[33]  C. Lemarié Generalisation process for Top100: research in generalisation brought to fruition , 2003 .

[34]  Mark Monmonier,et al.  RASTER-MODE AREA GENERALIZATION FOR LAND USE AND LAND COVER MAPS , 1983 .

[35]  Pattie Maes,et al.  Kasbah: An Agent Marketplace for Buying and Selling Goods , 1996, PAAM.

[36]  P.J.M. van Oosterom,et al.  The GAP-tree, an approach to "on-the-fly' map generalization of an area partitioning , 1995 .

[37]  Menno-Jan Kraak,et al.  Semantic similarity evaluation model in categorical database generalization : ISPRS commission IV, WG IV - 3 , 2002 .

[38]  Anne Ruas,et al.  Mécanismes de coordination multi-agents pour la cartographie automatique : Analyse d'un problème spatialisé complexe (poster) , 2001, JFIADSMA.

[39]  Martin Galanda,et al.  Adaptives Zoomen in der Internetkartographie , 2003, KN - Journal of Cartography and Geographic Information.

[40]  K. McGarigal,et al.  FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. , 1995 .

[41]  Robert Weibel,et al.  Using an Energy Minimization Technique for Polygon Generalization , 2003 .

[42]  Urs Ramer,et al.  An iterative procedure for the polygonal approximation of plane curves , 1972, Comput. Graph. Image Process..

[43]  Leonid Sheremetov,et al.  Weiss, Gerhard. Multiagent Systems a Modern Approach to Distributed Artificial Intelligence , 2009 .

[44]  Barbara P. Buttenfield,et al.  Acquisition of Procedural Cartographic Knowledge by Reverse Engineering , 1995 .

[45]  Michael F. Goodchild Cartographic Futures On A Digital Earth , 2000 .

[46]  J. D. Whyatt,et al.  Line generalisation by repeated elimination of points , 1993 .

[47]  Nigel J. Brown,et al.  A CORINE Map of Great Britain by Automated Means, Techniques for Automatic Generalization of the Land Cover Map of Great Britain , 1996, Int. J. Geogr. Inf. Sci..

[48]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[49]  A. Ruas,et al.  Detecting Building Alignments for Generalisation Purposes , 2002 .

[50]  P. Burrough,et al.  Principles of geographical information systems , 1998 .

[51]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[52]  Martin Galanda,et al.  Scalable Vector Graphics: Ein neuer Grafikstandard für das Internet , 2002 .

[53]  Maria C. Bengtson DESIGN AND IMPLEMENTING OF AUTOMATICAL GENERALISATION IN A NEW PRODUCTIONENVIRONMENT FOR DATASETS IN SCALE 1:50.000 (- and 1:100.000) , 2001 .

[54]  Beat Peter,et al.  Measures for the Generalization of Polygonal Maps with Categorical Data , 2001 .

[55]  S. Brendle,et al.  Calculus of Variations , 1927, Nature.

[56]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[57]  William Mackaness,et al.  Modelling Knowledge For Automated Generalisation of Categorical Maps - A Constraint Based Approach , 1999 .

[58]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[59]  J. C. Müller,et al.  Area-patch generalisation: a competitive approach , 1992 .

[60]  Martin Raubal,et al.  Ontology and epistemology for agent-based wayfinding simulation , 2001, Int. J. Geogr. Inf. Sci..

[61]  Ferjan Ormeling,et al.  Basic Cartography for Students and Technicians , 1984 .

[62]  A. Ruas Modèle de généralisation de données géographiques à base de contraintes et d'autonomie , 1999 .

[63]  H. Collier,et al.  MULTILINGUAL DICTIONARY OF TECHNICAL TERMS IN CARTOGRAPHY , 1975 .

[64]  Michael F. Worboys,et al.  GIS : a computing perspective , 2004 .

[65]  Michael Luck Foundations of multi-agent systems: issues and directions , 1997, Knowl. Eng. Rev..

[66]  Terry A. Slocum Thematic Cartography and Visualization , 1998 .

[67]  Martin Galanda,et al.  Adaptive Zooming in Web Cartography , 2002, Comput. Graph. Forum.

[68]  William Mackaness,et al.  A Constraint Based Approach to Human Computer Interaction in Automated Cartography , 1995 .

[69]  M. Iri,et al.  Polygonal Approximations of a Curve — Formulations and Algorithms , 1988 .

[70]  Anthony K. H. Tung,et al.  Spatial clustering methods in data mining : A survey , 2001 .

[71]  Mahes Visvalingam Digital cartography , 1990, Comput. Aided Des..

[72]  Robert Weibel,et al.  Computational Perspectives on Map Generalization , 1998, GeoInformatica.

[73]  Mary Kate Beard Multiple representations from a detailed database : a scheme for automated generalization , 1988 .

[74]  Karen L. McGraw,et al.  Knowledge Acquisition: Principles and Guidelines , 1989 .

[75]  Joachim Bobrich Ein neuer Ansatz zur kartographischen Verdrängung auf der Grundlage eines mechanischen Federmodells , 1996 .

[77]  Robert Weibel,et al.  GIS and Generalization Methodology and Practice GISDATA 1 , 1995 .

[78]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[79]  Mark Ware,et al.  Resolving Graphic Conflict in Scale Reduced Maps : Refining the Simulated Annealing Technique , 2003 .

[80]  M. Molenaar An Introduction To The Theory Of Spatial Object Modelling For GIS , 1998 .

[81]  Anne Ruas,et al.  Experiments with Learning Techniques for Spatial Model Enrichment and Line Generalization , 1998, GeoInformatica.

[82]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[83]  Jean-Daniel Zucker,et al.  An Abstraction-based Machine Learning Approach to Cartographic Generalisation , 2005, IICAI.

[84]  Christopher B. Jones,et al.  Conflict Reduction in Map Generalization Using Iterative Improvement , 1998, GeoInformatica.

[85]  Alex Goodall,et al.  The guide to expert systems , 1985 .

[86]  Michael R. C. Coulson,et al.  CONSENSUS OR CONFUSION: CARTOGRAPHERS' KNOWLEDGE OF GENERALIZATION , 1993 .

[87]  Robert Weibel,et al.  Using Vector and Raster-Based Techniques in Categorical Map Generalization , 1999 .

[88]  D. Mark,et al.  The Nature Of Boundaries On ‘Area-Class’ Maps , 1989 .

[89]  Jean-Claude Müller,et al.  Line Generalization Based on Analysis of Shape Characteristics , 1998 .

[90]  Andrew U. Frank,et al.  Formalization of Families of Categorical Coverages , 1997, Int. J. Geogr. Inf. Sci..

[91]  Robert Weibel,et al.  Overcoming the Knowledge Acquisition Bottleneck in Map Generalization: The Role of Interactive Systems and Computational Intelligence , 1995, COSIT.

[92]  Michael F. Goodchild,et al.  Development and test of an error model for categorical data , 1992, Int. J. Geogr. Inf. Sci..

[93]  Peter J. Williamson,et al.  Simplification and generalization of large scale data for roads : a comparison of two filtering algorithms , 1995 .

[94]  I. S. Torsun Foundations of intelligent knowledge-based systems , 1995 .

[95]  William Mackaness,et al.  Template Matching in Support of Generalisation of Rural Buildings , 2002 .

[96]  Nicholas R. Jennings,et al.  A Roadmap of Agent Research and Development , 2004, Autonomous Agents and Multi-Agent Systems.

[97]  Robert B McMaster,et al.  The Integration Of Simplification And Smoothing Algorithms In Line Generalization , 1989 .

[98]  Robert Weibel,et al.  Map Generalization in the Context of Digital Systems , 1995 .

[99]  Tumasch Reichenbacher,et al.  The World in Your Pocket - Towards a Mobile Cartography , 2001 .

[100]  C. Tomlin Geographic information systems and cartographic modeling , 1990 .

[101]  Nicolas Regnauld,et al.  Généralisation du bâti : structure spatiale de type graphe et représentation cartographique , 1998 .

[102]  Steven Zoraster,et al.  Expert Systems And The Map Label Placement Problem , 1991 .

[103]  Robert Weibel,et al.  Generalising spatial data and dealing with multiple representations , 1999 .

[104]  William Mackaness,et al.  Computational Processes for Map Generalization , 1999 .

[105]  Monika Sester GENERALIZATION BASED ON LEAST SQUARES ADJUSTMENT , 2000 .

[106]  Elsa João Causes and Consequences of Map Generalisation , 1999 .

[107]  Rudolf Giffinger,et al.  Growth and Densification Processes in Suburban Landcapes-a Spatial Agent-Simulation , 2002 .

[108]  Jeffrey S. Torguson,et al.  Cartography: Thematic Map Design , 1990 .

[109]  Bo Su,et al.  Morphological Models for the Collapse of Area Features in Digital Map Generalization , 1998, GeoInformatica.

[110]  Bradford George Nickerson,et al.  Automated cartographic generalization for linear map features , 1987 .

[111]  Lars Harrie,et al.  An Optimisation Approach to Cartographic Generalisation , 2001 .

[112]  C. Duchêne,et al.  Comparison of different approaches to combine road generalisation algorithms: GALBE, AGENT and CartoLearn , 2001 .

[113]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[114]  Antoine Quint,et al.  Scalable Vector Graphics , 2020, Definitions.

[115]  K.-H. Anders,et al.  A Hierarchical Graph-Clustering Approach to find Groups of Objects , 2003 .

[116]  Robert Weibel,et al.  Three essential building blocks for automated generalization , 2020 .

[117]  Robert B Mc Master,et al.  Conceptual frameworks for geographical knowledge , 1991 .

[118]  Sébastien Mustière,et al.  MACHINE LEARNING TECHNIQUES FOR DETERMINING PARAMETERS OF CARTOGRAPHIC GENERALISATION ALGORITHMS , 2000 .

[119]  Tapani Sarjakoski,et al.  Incremental generalization for multiple representations of geographical objects , 1995 .

[120]  Ira Rudowsky,et al.  Intelligent Agents , 2004, Commun. Assoc. Inf. Syst..

[121]  Guillermo Ricardo Simari,et al.  Multiagent systems: a modern approach to distributed artificial intelligence , 2000 .

[122]  Tapani Sarjakoski,et al.  Simultaneous Graphic Generalization of Vector Data Sets , 2002, GeoInformatica.

[123]  A. Saalfeld Topologically Consistent Line Simplification with the Douglas-Peucker Algorithm , 1999 .

[124]  Olli Jaakkola,et al.  Multi-scale Categorical Data Bases with Automatic Generalization Transformations Based on Map Algebra , 1998 .

[125]  Peter van Oosterom,et al.  Reactive Data Structures for Geographic Information Systems , 1993 .

[126]  Cécile Duchêne Coordinative agents for automated generalisation of rural areas , 2003 .