The inverse problem in mathematical biology.

Biological systems present particular challengers to model for the purposes of formulating predictions of generating biological insight. These systems are typically multi-scale, complex, and empirical observations are often sparse and subject to variability and uncertainty. This manuscript will review some of these specific challenges and introduce current methods used by modelers to construct meaningful solutions, in the context of preserving biological relevance. Opportunities to expand these methods are also discussed.

[1]  Tina Toni,et al.  Parameter inference and model selection in signaling pathway models. , 2009, Methods in molecular biology.

[2]  Tim Moses,et al.  A comparison of statistical selection strategies for univariate and bivariate log-linear models. , 2010, The British journal of mathematical and statistical psychology.

[3]  James O. Berger,et al.  Objective Bayesian Methods for Model Selection: Introduction and Comparison , 2001 .

[4]  Eva Balsa-Canto,et al.  AMIGO, a toolbox for advanced model identification in systems biology using global optimization , 2011, Bioinform..

[5]  G. Clermont,et al.  THE ACUTE INFLAMMATORY RESPONSE IN DIVERSE SHOCK STATES , 2005, Shock.

[6]  Gilles Clermont,et al.  An ensemble of models of the acute inflammatory response to bacterial lipopolysaccharide in rats: results from parameter space reduction. , 2008, Journal of theoretical biology.

[7]  G. Clermont,et al.  In silico design of clinical trials: A method coming of age , 2004, Critical care medicine.

[8]  Gilles Clermont,et al.  Ensemble Models of Neutrophil Trafficking in Severe Sepsis , 2012, PLoS Comput. Biol..

[9]  Gary An,et al.  In silico augmentation of the drug development pipeline: examples from the study of acute inflammation , 2011, Drug development research.

[10]  Claudio Cobelli,et al.  Global identifiability of nonlinear models of biological systems , 2001, IEEE Transactions on Biomedical Engineering.

[11]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[12]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[13]  Maria Pia Saccomani,et al.  Examples of testing global identifiability of biological and biomedical models with the DAISY software , 2010, Comput. Biol. Medicine.

[14]  Gilles Clermont,et al.  Equation-based models of dynamic biological systems. , 2008, Journal of critical care.

[15]  J. Rubin,et al.  In Silico and In Vivo Approach to Elucidate the Inflammatory Complexity of CD14-deficient Mice , 2006, Molecular medicine.

[16]  H. Jeffreys,et al.  Theory of probability , 1896 .

[17]  Eva Balsa-Canto,et al.  Bioinformatics Applications Note Systems Biology Genssi: a Software Toolbox for Structural Identifiability Analysis of Biological Models , 2022 .

[18]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[19]  Gilles Clermont,et al.  A Dynamical Model of Human Immune Response to Influenza a Virus Infection , 2006 .

[20]  John A Kellum,et al.  Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the Genetic and Inflammatory Markers of Sepsis (GenIMS) Study. , 2007, Archives of internal medicine.

[21]  Maria Pia Saccomani,et al.  DAISY: A new software tool to test global identifiability of biological and physiological systems , 2007, Comput. Methods Programs Biomed..

[22]  Goonaseelan Pillai,et al.  Non-Linear Mixed Effects Modeling – From Methodology and Software Development to Driving Implementation in Drug Development Science , 2005, Journal of Pharmacokinetics and Pharmacodynamics.

[23]  Gilles Clermont,et al.  Unbiased inference of parameter distributions for nonlinear models: The underdetermined case , 2008 .

[24]  Gilles Clermont,et al.  A mathematical model of intrahost pneumococcal pneumonia infection dynamics in murine strains. , 2014, Journal of theoretical biology.

[25]  H. Akaike A new look at the statistical model identification , 1974 .

[26]  James R Faeder,et al.  Rule-based modeling of biochemical systems with BioNetGen. , 2009, Methods in molecular biology.

[27]  Gilles Clermont,et al.  From Inverse Problems in Mathematical Physiology to Quantitative Differential Diagnoses , 2007, PLoS Comput. Biol..

[28]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[29]  H. Engl,et al.  Inverse problems in systems biology , 2009 .

[30]  Gilles Clermont,et al.  Evidence-based modeling of critical illness: an initial consensus from the Society for Complexity in Acute Illness. , 2007, Journal of critical care.

[31]  G. An,et al.  Agent‐based models in translational systems biology , 2009, Wiley interdisciplinary reviews. Systems biology and medicine.

[32]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..