Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP

Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands disperse linearly around pairs of nodes with fixed chirality, the Weyl points. In WSMs, nonorthogonal electric and magnetic fields induce an exotic phenomenon known as the chiral anomaly, resulting in an unconventional negative longitudinal magnetoresistance, the chiral-magnetic effect. However, it remains an open question to which extent this effect survives when chirality is not well-defined. Here, we establish the detailed Fermi-surface topology of the recently identified WSM TaP via combined angle-resolved quantum-oscillation spectra and band-structure calculations. The Fermi surface forms banana-shaped electron and hole pockets surrounding pairs of Weyl points. Although this means that chirality is ill-defined in TaP, we observe a large negative longitudinal magnetoresistance. We show that the magnetoresistance can be affected by a magnetic field-induced inhomogeneous current distribution inside the sample.

[1]  P. Kapitza The Study of the Specific Resistance of Bismuth Crystals and Its Change in Strong Magnetic Fields and Some Allied Problems , 1928 .

[2]  Lars Onsager,et al.  Interpretation of the de Haas-van Alphen effect , 1952 .

[3]  I. Rosenman Effet Shubnikov de Haas dans Cd3As2: Forme de la surface de Fermi et modele non parabolique de la bande de conduction☆ , 1969 .

[4]  J. Bell,et al.  A PCAC puzzle: pi0-->gammagamma in the sigma-model , 1969 .

[5]  S. Adler Axial vector vertex in spinor electrodynamics , 1969 .

[6]  W. Reed,et al.  Anomalous Longitudinal Magnetoresistance in Metals , 1971 .

[7]  K. Yoshida Anomalous Electric Fields in Semimetals under High Magnetic Fields , 1975 .

[8]  K. Yoshida An Anomalous Behavior of the Longitudinal Magnetoresistance in Semimetals , 1976 .

[9]  K. Yoshida A Geometrical Transport Model for Inhomogeneous Current Distribution in Semimetals under High Magnetic Fields , 1976 .

[10]  V. S. Edel’man Electrons in bismuth , 1976 .

[11]  K. Yoshida Transport of spatially inhomogeneous current in a compensated metal under magnetic fields. III. A case of bismuth in longitudinal and transverse magnetic fields , 1980 .

[12]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (I). Proof by homotopy theory , 1981 .

[13]  Holger Bech Nielsen,et al.  The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal , 1983 .

[14]  D. Shoenberg,et al.  Magnetic Oscillations in Metals , 1984 .

[15]  A. Pippard Magnetoresistance in metals , 1989 .

[16]  C. Rossel,et al.  Active microlevers as miniature torque magnetometers , 1996 .

[17]  R. Bertlmann,et al.  Anomalies in Quantum Field Theory , 2022 .

[18]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[19]  J. Singleton Band Theory and Electronic Properties of Solids , 2001 .

[20]  Y. Kopelevich,et al.  Reentrant metallic behavior of graphite in the quantum limit. , 2002, Physical review letters.

[21]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[22]  A. Becke,et al.  A simple effective potential for exchange. , 2006, The Journal of chemical physics.

[23]  R. Schützhold,et al.  BOOK REVIEW: Quantum Analogues: From Phase Transitions to Black Holes and Cosmology , 2007 .

[24]  Quantum Phase Transitions from Topology in Momentum Space , 2006, cond-mat/0601372.

[25]  S. Murakami Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase , 2007, 0710.0930.

[26]  N. Marzari,et al.  wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..

[27]  P. Blaha,et al.  Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. , 2009, Physical review letters.

[28]  A. Vishwanath,et al.  Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2010, 1007.0016.

[29]  Kai-Yu Yang,et al.  Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates , 2011, 1105.2353.

[30]  Xi Dai,et al.  Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. , 2011, Physical review letters.

[31]  Leon Balents,et al.  Weyl semimetal in a topological insulator multilayer. , 2011, Physical review letters.

[32]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[33]  C. Kane,et al.  Dirac semimetal in three dimensions. , 2011, Physical Review Letters.

[34]  A. Grushin Consequences of a condensed matter realization of Lorentz violating QED in Weyl semi-metals , 2012, 1205.3722.

[35]  Xi Dai,et al.  Multi-Weyl topological semimetals stabilized by point group symmetry. , 2011, Physical review letters.

[36]  A. Vishwanath,et al.  Probing the chiral anomaly with nonlocal transport in three dimensional topological semimetals , 2013, 1306.1234.

[37]  L. Li,et al.  Dirac versus Weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena. , 2013, Physical review letters.

[38]  B. Spivak,et al.  Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals , 2012, 1206.1627.

[39]  G. Gu,et al.  Observation of the chiral magnetic effect in ZrTe , 2014 .

[40]  G. Gu,et al.  Chiral magnetic effect in ZrTe5 , 2014, Nature Physics.

[41]  Z. J. Wang,et al.  Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.

[42]  Yuri Grin,et al.  WinCSD: software package for crystallographic calculations (Version 4) , 2014 .

[43]  C. Felser,et al.  Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP , 2015, Nature Physics.

[44]  Zhu-An Xu,et al.  Chiral anomaly induced negative magnetoresistance in topological Weyl semimetal NbAs , 2015, 1506.03190.

[45]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[46]  X. Dai,et al.  Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs , 2015, 1503.01304.

[47]  D. Pesin,et al.  Chiral magnetic effect and natural optical activity in metals with or without Weyl points , 2015 .

[48]  Su-Yang Xu,et al.  Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide , 2015, Nature Physics.

[49]  X. Dai,et al.  Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides , 2014, 1501.00060.

[50]  G. F. Chen,et al.  Experimental discovery of Weyl semimetal TaAs , 2015 .

[51]  Zhongkai Liu,et al.  Weyl semimetal phase in the non-centrosymmetric compound TaAs , 2015, Nature Physics.

[52]  Su-Yang Xu,et al.  Theoretical Discovery/Prediction: Weyl Semimetal states in the TaAs material (TaAs, NbAs, NbP, TaP) class , 2015, 1501.00755.

[53]  M. Chang,et al.  Chiral magnetic effect in the absence of Weyl node , 2015, 1508.05187.

[54]  Su-Yang Xu,et al.  Observation of the Adler-Bell-Jackiw chiral anomaly in a Weyl semimetal , 2015, 1503.02630.

[55]  R. Cava,et al.  Signature of the chiral anomaly in a Dirac semimetal: a current plume steered by a magnetic field , 2015, 1503.08179.

[56]  Cheng Zhang,et al.  Detection of chiral anomaly and valley transport in Dirac semimetals , 2015 .

[57]  Su-Yang Xu,et al.  A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class , 2015, Nature Communications.

[58]  Su-Yang Xu,et al.  Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal , 2016, Nature Communications.

[59]  C. Felser,et al.  Fermiology Evolution of Weyl Semimetals in Transition Metal Pnictide Family , 2015 .

[60]  L. Balicas,et al.  Non-stoichiometry and Defects in the Weyl Semimetals TaAs, TaP, NbAs, and NbP , 2015, 1511.03221.

[61]  Zhu-An Xu,et al.  Helicity protected ultrahigh mobility Weyl fermions in NbP , 2015, 1506.00924.

[62]  I. Souza,et al.  Gyrotropic Magnetic Effect and the Magnetic Moment on the Fermi Surface. , 2015, Physical review letters.

[63]  A. Grushin,et al.  Visualizing the chiral anomaly in Dirac and Weyl semimetals with photoemission spectroscopy , 2015, 1503.04329.