Operator Scaling: Theory and Applications

In this paper, we present a deterministic polynomial time algorithm for testing whether a symbolic matrix in non-commuting variables over $${\mathbb {Q}}$$ Q is invertible or not. The analogous question for commuting variables is the celebrated polynomial identity testing (PIT) for symbolic determinants. In contrast to the commutative case, which has an efficient probabilistic algorithm, the best previous algorithm for the non-commutative setting required exponential time (Ivanyos et al. in Comput Complex 26(3):717–763, 2017 ) (whether or not randomization is allowed). The algorithm efficiently solves the “word problem” for the free skew field, and the identity testing problem for arithmetic formulae with division over non-commuting variables, two problems which had only exponential time algorithms prior to this work. The main contribution of this paper is a complexity analysis of an existing algorithm due to Gurvits (J Comput Syst Sci 69(3):448–484, 2004 ), who proved it was polynomial time for certain classes of inputs. We prove it always runs in polynomial time. The main component of our analysis is a simple (given the necessary known tools) lower bound on central notion of capacity of operators (introduced by Gurvits  2004 ). We extend the algorithm to actually approximate capacity to any accuracy in polynomial time, and use this analysis to give quantitative bounds on the continuity of capacity (the latter is used in a subsequent paper on Brascamp–Lieb inequalities). We also extend the algorithm to compute not only singularity, but actually the (non-commutative) rank of a symbolic matrix, yielding a factor 2 approximation of the commutative rank. This naturally raises a relaxation of the commutative PIT problem to achieving better deterministic approximation of the commutative rank. Symbolic matrices in non-commuting variables, and the related structural and algorithmic questions, have a remarkable number of diverse origins and motivations. They arise independently in (commutative) invariant theory and representation theory, linear algebra, optimization, linear system theory, quantum information theory, approximation of the permanent and naturally in non-commutative algebra. We provide a detailed account of some of these sources and their interconnections. In particular, we explain how some of these sources played an important role in the development of Gurvits’ algorithm and in our analysis of it here.

[1]  Jan Draisma,et al.  The Hilbert Null-cone on Tuples of Matrices and Bilinear Forms , 2006 .

[2]  George Szeto,et al.  A Generalization of the Artin-Procesi Theorem , 1977 .

[3]  Ju P Razmyslov TRACE IDENTITIES OF FULL MATRIX ALGEBRAS OVER A FIELD OF CHARACTERISTIC ZERO , 1974 .

[4]  W. Haken Theorie der Normalflächen , 1961 .

[5]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[6]  Markus Bläser,et al.  Greedy Strikes Again: A Deterministic PTAS for Commutative Rank of Matrix Spaces , 2016, CCC.

[7]  P. M. COHN,et al.  On the Construction of the Free Field , 1999, Int. J. Algebra Comput..

[8]  Nutan Limaye,et al.  Lower Bounds for Non-Commutative Skew Circuits , 2016, Theory Comput..

[9]  Ketan Mulmuley,et al.  Geometric Complexity Theory V: Equivalence between Blackbox Derandomization of Polynomial Identity Testing and Derandomization of Noether's Normalization Lemma , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[10]  J. Edmonds Systems of distinct representatives and linear algebra , 1967 .

[11]  A. S. Amitsur,et al.  Minimal identities for algebras , 1950 .

[12]  G. Higman,et al.  The Units of Group‐Rings , 1940 .

[13]  László Lovász,et al.  Singular spaces of matrices and their application in combinatorics , 1989 .

[14]  Noam Nisan,et al.  Lower bounds for non-commutative computation , 1991, STOC '91.

[15]  Joe W. Harris,et al.  Vector spaces of matrices of low rank , 1988 .

[16]  Louis Rowen,et al.  Polynomial identities in ring theory , 1980 .

[17]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[18]  Peter Malcolmson,et al.  A Prime Matrix Ideal Yields a Skew Field , 1978 .

[19]  E. Formanek,et al.  Generating the ring of matrix invariants , 1986 .

[20]  Leonid Gurvits,et al.  Classical complexity and quantum entanglement , 2004, J. Comput. Syst. Sci..

[21]  Michel Van den Bergh,et al.  Semi-invariants of quivers for arbitrary dimension vectors , 1999 .

[22]  Russell Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.

[23]  Avi Wigderson,et al.  Non-commutative circuits and the sum-of-squares problem , 2010, STOC '10.

[24]  L. Hua,et al.  Some Properties of a Sfield. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Mike D. Atkinson,et al.  LARGE SPACES OF MATRICES OF BOUNDED RANK , 1980 .

[26]  P. M. Cohn,et al.  The word problem for free fields , 1973, Journal of Symbolic Logic.

[27]  Harm Derksen,et al.  Polynomial bounds for rings of invariants , 2000 .

[28]  Thomas Thierauf,et al.  Bipartite perfect matching is in quasi-NC , 2016, STOC.

[29]  Vladimir L. Popov,et al.  THE CONSTRUCTIVE THEORY OF INVARIANTS , 1982 .

[30]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..

[31]  R. Howe ON CLASSICAL INVARIANT THEORY , 2010 .

[32]  Zeev Dvir,et al.  Locally Decodable Codes with Two Queries and Polynomial Identity Testing for Depth 3 Circuits , 2007, SIAM J. Comput..

[33]  Harm Derksen,et al.  Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients , 2000 .

[34]  Christophe Reutenauer,et al.  COMMUTATIVE/NONCOMMUTATIVE RANK OF LINEAR MATRICES AND SUBSPACES OF MATRICES OF LOW RANK , 2004 .

[35]  Ran Raz,et al.  Deterministic polynomial identity testing in non-commutative models , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[36]  K. Ramachandra,et al.  Vermeidung von Divisionen. , 1973 .

[37]  Youming Qiao,et al.  Non-commutative Edmonds’ problem and matrix semi-invariants , 2015, computational complexity.

[38]  Claudio Procesi,et al.  The invariant theory of n × n matrices , 1976 .

[39]  László Lovász,et al.  On determinants, matchings, and random algorithms , 1979, International Symposium on Fundamentals of Computation Theory.

[40]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[41]  Daniel A. Spielman,et al.  Randomness efficient identity testing of multivariate polynomials , 2001, STOC '01.

[42]  Roy Meshulam,et al.  Spaces of Singular Matrices and Matroid Parity , 2002, Eur. J. Comb..

[43]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[44]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[45]  Oleg Golberg Combinatorial Nullstellensatz , 2007 .

[46]  Amir Shpilka,et al.  Quasipolynomial-Time Identity Testing of Non-commutative and Read-Once Oblivious Algebraic Branching Programs , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[47]  Zeev Dvir,et al.  Locally decodable codes with 2 queries and polynomial identity testing for depth 3 circuits , 2005, STOC '05.

[48]  Alex Samorodnitsky,et al.  A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 1998, STOC '98.

[49]  Youming Qiao,et al.  Constructive non-commutative rank computation is in deterministic polynomial time , 2015, computational complexity.

[50]  D. Hilbert,et al.  Ueber die vollen Invariantensysteme , 1893 .

[51]  Avi Wigderson,et al.  Non-commutative arithmetic circuits with division , 2014, Theory Comput..

[52]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[53]  J. Dieudonné,et al.  Sur une généralisation du groupe orthogonal à quatre variables , 1948 .

[54]  Christophe Reutenauer,et al.  Inversion height in free fields , 1996 .

[55]  Paul M. Cohn,et al.  Skew Fields: Theory of General Division Rings , 1995 .

[56]  S. A. Amitsur Rational identities and applications to algebra and geometry , 1966 .

[57]  Ilya Volkovich,et al.  Black-Box Identity Testing of Depth-4 Multilinear Circuits , 2011, Combinatorica.

[58]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[59]  Avi Wigderson,et al.  Relationless Completeness and Separations , 2010, 2010 IEEE 25th Annual Conference on Computational Complexity.

[60]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[61]  R. Rado A THEOREM ON INDEPENDENCE RELATIONS , 1942 .

[62]  Michael O. Rabin,et al.  Recursive Unsolvability of Group Theoretic Problems , 1958 .

[63]  Harm Derksen,et al.  Polynomial degree bounds for matrix semi-invariants , 2015, ArXiv.

[64]  Amir Shpilka,et al.  Explicit Noether Normalization for Simultaneous Conjugation via Polynomial Identity Testing , 2013, APPROX-RANDOM.

[65]  Amir Yehudayoff,et al.  Arithmetic Circuits: A survey of recent results and open questions , 2010, Found. Trends Theor. Comput. Sci..

[66]  Laurent Hyafil,et al.  On the parallel evaluation of multivariate polynomials , 1978, SIAM J. Comput..

[67]  Mátyás Domokos,et al.  Semi-invariants of quivers as determinants , 2001 .

[68]  Dmitry S. Kaliuzhnyi-Verbovetskyi,et al.  Noncommutative rational functions, their difference-differential calculus and realizations , 2010, Multidimens. Syst. Signal Process..

[69]  Alex Samorodnitsky,et al.  A Deterministic Algorithm for Approximating the Mixed Discriminant and Mixed Volume, and a Combinatorial Corollary , 2002, Discret. Comput. Geom..

[70]  Mike D. Atkinson,et al.  SPACES OF MATRICES OF BOUNDED RANK , 1978 .

[71]  Hoeteck Wee,et al.  More on noncommutative polynomial identity testing , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[72]  P. M. Cohn,et al.  The word problem for free fields: a correction and an addendum , 1975, Journal of Symbolic Logic.

[73]  Neeraj Kayal,et al.  Polynomial Identity Testing for Depth 3 Circuits , 2006, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[74]  A. King MODULI OF REPRESENTATIONS OF FINITE DIMENSIONAL ALGEBRAS , 1994 .

[75]  Youming Qiao,et al.  Constructive noncommutative rank computation in deterministic polynomial time over fields of arbitrary characteristics , 2015, ArXiv.

[76]  D. M.,et al.  SPACES OF MATRICES WITH SEVERAL ZERO EIGENVALUES , 2006 .

[77]  L. Gurvits,et al.  The Deeation-innation Method for Certain Semideenite Programming and Maximum Determinant Completion Problems , 1998 .

[78]  Marek Karpinski,et al.  Generalized Wong sequences and their applications to Edmonds' problems , 2013, J. Comput. Syst. Sci..

[79]  Paul M. Cohn,et al.  The Embedding of Firs in Skew Fields , 1971 .

[80]  Leonid Gurvits,et al.  Hyperbolic polynomials approach to Van der Waerden/Schrijver-Valiant like conjectures: sharper bounds, simpler proofs and algorithmic applications , 2005, STOC '06.

[81]  Alex Samorodnitsky,et al.  A deterministic polynomial-time algorithm for approximating mixed discriminant and mixed volume , 2000, STOC '00.

[82]  Hanspeter Kraft,et al.  Classical invariant theory: a primer , 1996 .

[83]  Harm Derksen,et al.  Computational Invariant Theory , 2002 .

[84]  Avi Wigderson,et al.  Algorithmic and optimization aspects of Brascamp-Lieb inequalities, via Operator Scaling , 2016, Geometric and Functional Analysis.

[85]  Avi Wigderson,et al.  Algorithmic and optimization aspects of Brascamp-Lieb inequalities, via Operator Scaling , 2018 .