Flat systems, equivalence and feedback

Flat systems, an important subclass of nonlinear control systems introduced via differential-algebraic methods, are defined in a differential geometric framework. We utilize the infinite dimensional geometry developed by Vinogradov and coworkers: a control system is a diffiety, or more precisely, an ordinary diffiety, i.e. a smooth infinite-dimensional manifold equipped with a privileged vector field. After recalling the definition of a Lie-Backlund mapping, we say that two systems are equivalent if they are related by a Lie-Backlund isomorphism. Flat systems are those systems which are equivalent to a controllable linear one. The interest of such an abstract setting relies mainly on the fact that the above system equivalence is interpreted in terms of endogenous dynamic feedback. The presentation is as elementary as possible and illustrated by the VTOL aircraft.

[1]  Jean-Baptiste Pomet,et al.  A non-exact Brunovsky form and dynamic feedback linearization , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[2]  Philippe Martin Contribution a l'etude des systemes differentiellement plats , 1992 .

[3]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[4]  Jean-Baptiste Pomet A differential geometric setting for dynamic equivalence and dynamic linearization , 1995 .

[5]  M. Fliess,et al.  Controlling Nonlinear Systems by Flatness , 1997 .

[6]  R. Murray,et al.  Differential flatness and absolute equivalence , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[7]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[8]  M. Fliess,et al.  Flatness, motion planning and trailer systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[9]  V. Zharinov Lecture Notes on Geometrical Aspects of Partial Differential Equations , 1992 .

[10]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[11]  E. Cartan,et al.  Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes , 1914 .

[12]  J. Rudolph,et al.  Control of flat systems by quasi-static feedback of generalized states , 1998 .

[13]  M. Fliess,et al.  Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund , 1993 .

[14]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[15]  Philippe Martin An intrinsic sufficient condition for regular decoupling , 1993 .

[16]  M. Fliess,et al.  Sur les systèmes non linéaires différentiellement plats , 1992 .