How similar is similar?

In the first part of the paper a theoretical discussion is presented regarding the fundamental concept of similarity and its relation to cue abstraction and categorisation. It is maintained that similarity is by definition context-dependent and strongly Interrelated to cue abstraction and categorisation. Emphasis is given to determining the “musical surface” that can act as a musically pertinent lowest level of abstraction on which similarity between musical entities can be measured. Then, each of these concepts is examined in more detail with respect to a number of research studies presented in the recent special issue of Musicæ Scientiæ on musical similarity (Discussion Forum 4A, 2007). Views claiming that a geometric piano-roll-like representation is the most appropriate choice for polyphonic pattern matching, or that musical repetition is structurally significant if at least fifty percent of a pattern is equivalent (i.e. if it is more similar than dissimilar), or that “dramatic disparities” between musical similarities and corresponding categories can be found In empirical studies, are critically re-examined with a view to clarifying the fundamental concept of similarity.

[1]  Alexandros Nanopoulos,et al.  VISA: The Voice Integration/Segregation Algorithm , 2007, ISMIR.

[2]  Jianzhong Li,et al.  Reasoning about Record Matching Rules , 2009, Proc. VLDB Endow..

[3]  Emilios Cambouropoulos,et al.  Towards a General Computational Theory of Musical Structure , 1998 .

[4]  S. Handel,et al.  Listening: An Introduction to the Perception of Auditory Events , 1993 .

[5]  E. Rosch Cognitive Representations of Semantic Categories. , 1975 .

[6]  Daniel Müllensiefen,et al.  Modelling experts’ notions of melodic similarity , 2007 .

[7]  C. Krumhansl,et al.  The Perception of Tone Hierarchies and Mirror Forms in Twelve-Tone Serial Music , 1987 .

[8]  Cheryl L. Bruner The Perception of Contemporary Pitch Structures , 1984 .

[9]  Naomi Ziv,et al.  Themes as prototypes: Similarity judgments and categorization tasks in musical contexts , 2007 .

[10]  Jaideep Srivastava,et al.  Entity identification in database integration , 1993, Proceedings of IEEE 9th International Conference on Data Engineering.

[11]  S. Handel Listening As Introduction to the Perception of Auditory Events , 1989 .

[12]  C. Krumhansl Music as Cognition. , 1987 .

[13]  E M I L I O S C A M B O U R O P O U L,et al.  Melodic Cue Abstraction , Similarity , and Category Formation : A Formal Model , 2002 .

[14]  Matthew A. Jaro,et al.  Advances in Record-Linkage Methodology as Applied to Matching the 1985 Census of Tampa, Florida , 1989 .

[15]  Costas S. Iliopoulos,et al.  Pattern Processing in Melodic Sequences: Challenges, Caveats and Prospects , 2001, Comput. Humanit..

[16]  Surajit Chaudhuri,et al.  A Primitive Operator for Similarity Joins in Data Cleaning , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[17]  M. Kuhlmann,et al.  The protein science of biosimilars. , 2006, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[18]  Ivan P. Fellegi,et al.  A Theory for Record Linkage , 1969 .

[19]  Stephen McAdams,et al.  Hearing Musical Streams , 2008 .

[20]  Andrew McCallum,et al.  Efficient clustering of high-dimensional data sets with application to reference matching , 2000, KDD '00.

[21]  H. Piéron,et al.  Vocabulaire de la psychologie , 1952 .

[22]  Michel Imberty,et al.  How do we perceive atonal music? Suggestions for a theoretical approach , 1993 .

[23]  Kjell Lemström,et al.  On comparing edit distance and geometric frameworks in content-based retrieval of symbolically encoded polyphonic music , 2007 .

[24]  Irèène Delièège,et al.  Similarity Perception ↔↔ Categorization ↔↔ Cue Abstraction , 2001 .

[25]  Craig A. Knoblock,et al.  Learning domain-independent string transformation weights for high accuracy object identification , 2002, KDD.

[26]  Patrick Mayeux,et al.  Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. , 2002, The New England journal of medicine.

[27]  Geraint A. Wiggins Models of musical similarity , 2007 .

[28]  Nicola Dibben,et al.  Motivic Structure and the Perception of Similarity , 2001 .

[29]  Panagiotis G. Ipeirotis,et al.  Duplicate Record Detection: A Survey , 2007 .

[30]  Divesh Srivastava,et al.  Record linkage: similarity measures and algorithms , 2006, SIGMOD Conference.

[31]  Evan Heit,et al.  Background knowledge and models of categorization , 2001, Similarity and Categorization.

[32]  Michael Clausen,et al.  PROMS: A Web-based Tool for Searching in Polyphonic Music , 2000, ISMIR.

[33]  Dennis Shasha,et al.  Declarative Data Cleaning: Language, Model, and Algorithms , 2001, VLDB.

[34]  James A. Hampton,et al.  Similarity and Categorization , 2001 .

[35]  Raymond J. Mooney,et al.  Adaptive duplicate detection using learnable string similarity measures , 2003, KDD '03.

[36]  Salvatore J. Stolfo,et al.  The merge/purge problem for large databases , 1995, SIGMOD '95.

[37]  Peter Christen,et al.  A Comparison of Fast Blocking Methods for Record Linkage , 2003, KDD 2003.

[38]  Sven Ahlbäck,et al.  Melodic similarity as a determinant of melody structure , 2007 .

[39]  T. Heise,et al.  The effect of insulin antibodies on the metabolic action of inhaled and subcutaneous insulin: a prospective randomized pharmacodynamic study. , 2005, Diabetes care.

[40]  H. Iyer,et al.  A tandem mass spectrometric approach to the identification of O-glycosylated glargine glycoforms in active pharmaceutical ingredient expressed in Pichia pastoris. , 2009, Rapid communications in mass spectrometry : RCM.

[41]  M. Marre,et al.  Lessons learned from biosimilar epoetins and insulins , 2010 .

[42]  Irène Deliège Similarity relations in listening to music: How do they come into play? , 2007 .

[43]  Sven Ahlbäck Melody Beyond Notes: A Study of Melody Cognition , 2004 .

[44]  Emilios Cambouropoulos,et al.  Musical Parallelism and Melodic Segmentation: : A Computational Approach , 2006 .

[45]  Nicholas Cook,et al.  Music, Imagination, And Culture , 1991 .

[46]  E. Cambouropoulos Voice And Stream: Perceptual And Computational Modeling Of Voice Separation , 2008 .

[47]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[48]  D. Medin,et al.  The role of theories in conceptual coherence. , 1985, Psychological review.

[49]  William E. Winkler,et al.  Methods for Record Linkage and Bayesian Networks , 2002 .

[50]  Anuradha Bhamidipaty,et al.  Interactive deduplication using active learning , 2002, KDD.

[51]  R. Jackendoff Consciousness and the Computational Mind , 1987 .

[52]  Pradeep Ravikumar,et al.  A Comparison of String Distance Metrics for Name-Matching Tasks , 2003, IIWeb.

[53]  Gerhard Widmer,et al.  Automated Motivic Analysis via Melodic Clustering , 2000 .

[54]  Geraint A. Wiggins,et al.  Algorithms for discovering repeated patterns in multidimensional representations of polyphonic music , 2002 .

[55]  William W. Cohen,et al.  Learning to match and cluster large high-dimensional data sets for data integration , 2002, KDD.