MG-APP: an open-source software for multi-GNSS precise point positioning and application analysis

To meet the demands of research and precise point positioning (PPP) in a multi-GNSS environment, we developed a GNSS data processing software named multi-GNSS automatic precise positioning software (MG-APP). MG-APP is an open-source software that can be run on Windows/Linux/UNIX and other operating systems. It can simultaneously process GPS/GLONASS/BDS/Galileo observations using a Kalman filter or a square root information filter (SRIF). Compared to the Kalman filter, the SRIF has better numerical stability and maintains stable convergence even with a significant round-off error. MG-APP has a comprehensive and friendly graphical user interface that conveniently allows the user to select models and set parameters. It also contains several types of tropospheric and estimation models that make it easy to analyze the impact of different models and parameters on PPP data processing. After the data processing finishes, zenith tropospheric delays, receiver clock offsets, satellite ambiguity parameters, observation residuals, and other results will be saved into files. Users can further analyze the solution results and construct graphs easily.

[1]  Harald Schuh,et al.  Vienna mapping functions in VLBI analyses , 2004 .

[2]  J. Zumberge,et al.  Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .

[3]  W. I. Bertiger,et al.  Effects of antenna orientation on GPS carrier phase , 1992 .

[4]  Harald Schuh,et al.  Simultaneous estimation of GLONASS pseudorange inter-frequency biases in precise point positioning using undifferenced and uncombined observations , 2017, GPS Solutions.

[5]  James E. Potter,et al.  STATISTICAL FILTERING OF SPACE NAVIGATION MEASUREMENTS , 1963 .

[6]  Mark L. Psiaki,et al.  Square-root information filtering and fixed-interval smoothing with singularities , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[7]  Richard B. Langley,et al.  UNB3m_pack: a neutral atmosphere delay package for radiometric space techniques , 2008 .

[8]  Tomoji Takasu,et al.  Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB , 2009 .

[9]  G. Bierman Factorization methods for discrete sequential estimation , 1977 .

[10]  Carey E. Noll,et al.  The crustal dynamics data information system: A resource to support scientific analysis using space geodesy , 2010 .

[11]  J. Kouba,et al.  GPS Precise Point Positioning Using IGS Orbit Products , 2001 .

[12]  J. Saastamoinen Contributions to the theory of atmospheric refraction , 1972 .

[13]  Lambert Wanninger,et al.  Carrier-phase inter-frequency biases of GLONASS receivers , 2012, Journal of Geodesy.

[14]  Yidong Lou,et al.  Real-time precise orbit determination for BDS satellites using the square root information filter , 2019, GPS Solutions.

[15]  A. Niell Global mapping functions for the atmosphere delay at radio wavelengths , 1996 .

[16]  Timothy A. Davis,et al.  Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization , 2011, TOMS.

[17]  Mohammed Mainul Hoque,et al.  Higher order ionospheric effects in precise GNSS positioning , 2007 .

[18]  Robert C. Langford,et al.  Statistical Filtering of Space Navigation Measurements , 1964 .

[19]  R. Hatch The synergism of GPS code and carrier measurements , 1982 .

[20]  Baocheng Zhang,et al.  A grid-based tropospheric product for China using a GNSS network , 2018, Journal of Geodesy.

[21]  G. J. Bierman The treatment of bias in the square-root information filter/smoother , 1973, CDC 1973.

[22]  Harald Schuh,et al.  GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations , 2018, GPS Solutions.

[23]  Baocheng Zhang,et al.  Ionosphere Sensing With a Low-Cost, Single-Frequency, Multi-GNSS Receiver , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[24]  H. S. Hopfield Tropospheric Effect on Electromagnetically Measured Range: Prediction from Surface Weather Data , 1971 .

[25]  Baocheng Zhang,et al.  Multi-GNSS precise point positioning (MGPPP) using raw observations , 2017, Journal of Geodesy.

[26]  H. Schuh,et al.  Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data , 2006 .

[27]  Geoffrey Blewitt,et al.  An Automatic Editing Algorithm for GPS data , 1990 .

[28]  Dingcheng Wu,et al.  L1 regularization for detecting offsets and trend change points in GNSS time series , 2018, GPS Solutions.

[29]  Pierre Héroux,et al.  Precise Point Positioning Using IGS Orbit and Clock Products , 2001, GPS Solutions.

[30]  P. Dooren,et al.  Numerical aspects of different Kalman filter implementations , 1986 .

[31]  Stephen Malys,et al.  GEODETIC POINT POSITIONING WITH GPS CARRIER BEAT PHASE DATA FROM THE , 1990 .

[32]  A. Bryson,et al.  Discrete square root filtering: A survey of current techniques , 1971 .

[33]  Yang Gao,et al.  Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo , 2015 .

[34]  T. Nilsson,et al.  GPT2: Empirical slant delay model for radio space geodetic techniques , 2013, Geophysical research letters.

[35]  Pan Li,et al.  Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning , 2014, GPS Solutions.

[36]  Fei Guo,et al.  Real-time clock jump compensation for precise point positioning , 2013, GPS Solutions.

[37]  Metin Nohutcu,et al.  PPPH: a MATLAB-based software for multi-GNSS precise point positioning analysis , 2018, GPS Solutions.

[38]  Yang Gao,et al.  Modeling and assessment of combined GPS/GLONASS precise point positioning , 2013, GPS Solutions.

[39]  Qiuying Guo,et al.  Precision comparison and analysis of four online free PPP services in static positioning and tropospheric delay estimation , 2015, GPS Solutions.