Turbulent transport stabilization by ICRH minority fast ions in low rotating JET ILW L-mode plasmas

The first experimental demonstration that fast ion induced stabilization of thermal turbulent transport takes place also at low values of plasma toroidal rotation has been obtained in JET ILW (ITER-like wall) L-mode plasmas with high ( 3 He)-D ICRH (ion cyclotron resonance heating) power. A reduction of the gyro-Bohm normalized ion heat flux and higher values of the normalized ion temperature gradient have been observed at high ICRH power and low NBI (neutral beam injection) power and plasma rotation. Gyrokinetic simulations indicate that ITG (ion temperature gradient) turbulence stabilization induced by the presence of high-energetic 3 He ions is the key mechanism in order to explain the experimental observations. Two main mechanisms have been identified to be responsible for the turbulence stabilization: a linear electrostatic wave-fast particle resonance mechanism and a nonlinear electromagnetic mechanism. The dependence of the stabilization on the 3 He distribution function has also been studied.

[1]  J. Weiland,et al.  Ion heat transport studies in JET , 2011 .

[2]  N Hawkes,et al.  A key to improved ion core confinement in the JET tokamak: ion stiffness mitigation due to combined plasma rotation and low magnetic shear. , 2011, Physical review letters.

[3]  Frank Jenko,et al.  Electron temperature gradient driven turbulence , 1999 .

[4]  C. D. Challis,et al.  Non-inductively driven currents in JET , 1989 .

[5]  Frank Jenko,et al.  Critical gradient formula for toroidal electron temperature gradient modes , 2001 .

[6]  C. Giroud,et al.  Consistency of atomic data for the interpretation of beam emission spectra , 2010 .

[7]  M. Nakata,et al.  Cross-Scale Interactions between Electron and Ion Scale Turbulence in a Tokamak Plasma. , 2015, Physical review letters.

[8]  A. Di Siena,et al.  Non-Maxwellian fast particle effects in gyrokinetic GENE simulations , 2018, 1802.04561.

[9]  Matthew Reinke,et al.  The effects of dilution on turbulence and transport in C-Mod ohmic plasmas and comparisons with gyrokinetic simulations , 2014 .

[10]  M. Rosenbluth,et al.  Local kinetic stability analysis of the ion temperature gradient mode , 1989 .

[11]  F. Romanelli,et al.  The linear threshold of the ion‐temperature‐gradient‐driven mode , 1993 .

[12]  Frank Jenko,et al.  The global version of the gyrokinetic turbulence code GENE , 2011, J. Comput. Phys..

[13]  J. Greene,et al.  Noncircular, finite aspect ratio, local equilibrium model , 1998 .

[14]  I. Abel,et al.  First principles of modelling the stabilization of microturbulence by fast ions , 2018, Nuclear Fusion.

[15]  Frank Jenko,et al.  Linear gyrokinetic stability calculations of electron heat dominated plasmas in ASDEX Upgrade , 2005 .

[16]  F. Jenko,et al.  Free energy balance in gyrokinetic turbulence , 2011 .

[17]  J. Citrin,et al.  The dependence of ion heat transport on the ion to electron temperature ratio in JET non-rotating plasmas , 2013 .

[18]  S. Lanthaler,et al.  Overview of the JET results in support to ITER , 2017, Nuclear Fusion.

[19]  T. Tala,et al.  Experimental study of the ion critical-gradient length and stiffness level and the impact of rotation in the JET tokamak. , 2009, Physical review letters.

[20]  R. Hatzky,et al.  Energy conservation in a nonlinear gyrokinetic particle-in-cell code for ion-temperature-gradient-driven modes in θ-pinch geometry , 2002 .

[21]  W. Dorland,et al.  Validating modeling assumptions of alpha particles in electrostatic turbulence , 2014, 1408.4967.

[22]  M. J. Mantsinen,et al.  Effects of finite drift orbit width and RF-induced spatial transport on plasma heated by ICRH , 2004 .

[23]  Torbjörn Hellsten,et al.  The influence of finite drift orbit width on ICRF heating in toroidal plasmas , 2002 .

[24]  Jose Milovich,et al.  Toroidal gyro‐Landau fluid model turbulence simulations in a nonlinear ballooning mode representation with radial modes , 1994 .

[25]  Akira Hirose,et al.  Electromagnetic and kinetic effects on the ion temperature gradient mode , 1992 .

[26]  A. Peeters,et al.  Trapped electron mode driven electron heat transport in JET: experimental investigation and gyro-kinetic theory validation , 2015 .

[27]  J. Contributors,et al.  Accuracy of EFIT equilibrium reconstruction with internal diagnostic information at JET. , 2008, The Review of scientific instruments.

[28]  Alain J. Brizard,et al.  Foundations of Nonlinear Gyrokinetic Theory , 2007 .

[29]  F. Jenko,et al.  Scale separation between electron and ion thermal transport. , 2008, Physical review letters.

[30]  D. McCune,et al.  Thermal ions dilution and ITG suppression in ASDEX Upgrade ion ITBs , 2007 .

[31]  E. Frieman,et al.  Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria , 1981 .

[32]  X. Litaudon,et al.  Impact of the α parameter on the microstability of internal transport barriers , 2005 .

[33]  Gregory W. Hammett,et al.  Advances in the simulation of toroidal gyro Landau fluid model turbulence , 1995 .

[34]  C. Bourdelle,et al.  Ion temperature profile stiffness: non-linear gyrokinetic simulations and comparison with experiment , 2013, 1303.2217.

[35]  A. Peeters,et al.  Gyrokinetic calculations of diffusive and convective transport of α particles with a slowing-down distribution function , 2008 .

[36]  F. Jenko,et al.  Turbulent transport of beam ions , 2008 .

[37]  W. Horton,et al.  Electromagnetic effect on the toroidal ion temperature gradient mode , 1993 .

[38]  P. Manas,et al.  Enhanced stabilisation of trapped electron modes by collisional energy scattering in tokamaks , 2015 .

[39]  M. Greenwald,et al.  Multi-scale gyrokinetic simulation of Alcator C-Mod tokamak discharges , 2014 .

[40]  J. Connor,et al.  Kinetic-ballooning-mode theory in general geometry , 1980 .

[41]  C. Bourdelle,et al.  Electromagnetic stabilization of tokamak microturbulence in a high-β regime , 2014, 1409.1963.

[42]  R. Waltz,et al.  Transport and turbulence studies in the linear ohmic confinement regime in Alcator C-Mod , 2012 .

[43]  F Jenko,et al.  Nonlinear stabilization of tokamak microturbulence by fast ions. , 2013, Physical review letters.

[44]  F. Jenko,et al.  Electromagnetic effects on turbulent transport in high-performance ASDEX Upgrade discharges , 2015 .

[45]  A. Hirose On finite β stabilization of the toroidal ion temperature gradient mode , 2000 .

[46]  R. Felton,et al.  JET (3He)–D scenarios relying on RF heating: survey of selected recent experiments , 2009 .

[47]  K. Burrell,et al.  Active spectroscopic measurements of the bulk deuterium properties in the DIII-D tokamak (invited). , 2012, The Review of scientific instruments.