Qubit-loss-free fusion of W states in cavity quantum electrodynamics system

In this paper, a new qubit-loss-free fusion scheme for atom W states has been proposed in cavity quantum electrodynamics system. Based on the resonant interactions between the atoms and the cavity modes, a larger-scale atom W state can be generated from three or four small-scale entangled states on the condition that one or two qubit of each W state is permitted to enter the fusion mechanism. The premise of all current fusion schemes is that only one particle can be extracted from each W state to be fused, and with the progress of experimental technology, two particles can be extracted. In this case, the qubit-loss-free fusion scheme will be realized for fusing more W states without any ancillary particles. In addition, the fusion of the atomic states can be achieved through the detection on cavity mode rather than the complex atomic detection, which makes the preparation scheme be more efficient andsimpler.

[1]  Prakash Panangaden,et al.  The computational power of the W And GHZ States , 2006, Quantum Inf. Comput..

[2]  Ke Li,et al.  Preparing large-scale maximally entangled W states in optical system , 2018, Quantum Inf. Process..

[3]  S.Bose,et al.  A Multiparticle Generalization of Entanglement Swapping , 1997 .

[4]  Masato Koashi,et al.  Elementary optical gate for expanding an entanglement web , 2008, 0803.1897.

[5]  G. Guo,et al.  Efficient scheme for two-atom entanglement and quantum information processing in cavity QED , 2000, Physical review letters.

[6]  Masato Koashi,et al.  An optical fusion gate for W-states , 2011, 1103.2195.

[7]  Shi-Biao Zheng,et al.  Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement , 2004 .

[8]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[9]  M. Murao,et al.  Quantum telecloning and multiparticle entanglement , 1998, quant-ph/9806082.

[10]  A. Smerzi,et al.  Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping , 1997 .

[11]  K. Kim,et al.  Quantum estimation of magnetic-field gradient using W-state , 2013, 1309.3994.

[12]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[13]  John M. Martinis,et al.  Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination , 2003 .

[14]  Stefan Nolte,et al.  On-chip generation of high-order single-photon W-states , 2014, Nature Photonics.

[15]  Zhuo-Liang Cao,et al.  Qubit-loss-free fusion of W states , 2016 .

[16]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[17]  Runyao Duan,et al.  Obtaining a W state from a Greenberger-Horne-Zeilinger state via stochastic local operations and classical communication with a rate approaching unity. , 2014, Physical review letters.

[18]  Masato Koashi,et al.  Demonstration of local expansion toward large-scale entangled webs. , 2010, Physical review letters.

[19]  Sahin Kaya Ozdemir,et al.  Fusing multiple W states simultaneously with a Fredkin gate , 2014, 1402.3152.

[20]  Zhuo-Liang Cao,et al.  Quantum information processing using coherent states in cavity QED , 2006 .

[21]  Masato Koashi,et al.  Local expansion of photonic W state using a polarization-dependent beamsplitter , 2008, 0810.2850.

[22]  Ye Yeo Quantum teleportation using three-particle entanglement , 2003 .

[23]  Akihisa Tomita,et al.  Teleportation of an unknown state by W state , 2002 .

[24]  Wei Song,et al.  Generating multi-atom entangled W states via light-matter interface based fusion mechanism , 2015, Scientific Reports.

[25]  Ting Gao,et al.  Simultaneous qubit-loss-free fusion of three multiple W states , 2018 .

[26]  P. Knight,et al.  Multiparticle generalization of entanglement swapping , 1998 .

[27]  R. Duan,et al.  Obtaining a W state from a Greenberger-Horne-Zeilinger state via stochastic local operations and classical communication with a rate approaching unity. , 2013, Physical review letters.

[28]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[29]  Fatih Ozaydin,et al.  Phase damping destroys quantum Fisher information of W states , 2014 .

[30]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[31]  Ming Yang,et al.  Qubit-loss-free fusion of atomic W states via photonic detection , 2018, Quantum Inf. Process..

[32]  Zhang-Qi Yin,et al.  Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator , 2015, 1509.03763.

[33]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[34]  J. Joo,et al.  Quantum teleportation via a W state , 2003, quant-ph/0306175.

[35]  Sahin Kaya Ozdemir,et al.  Teleportation of qubit states through dissipative channels: Conditions for surpassing the no-cloning limit , 2007, 0709.1662.

[36]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[37]  Sahin Kaya Ozdemir,et al.  Deterministic local doubling of W states , 2016, 1602.04166.

[38]  Can Yesilyurt,et al.  Quantum Fisher Information of Bipartitions of W States , 2015 .

[39]  G. Long,et al.  General scheme for superdense coding between multiparties , 2001, quant-ph/0110112.

[40]  Gershon Kurizki,et al.  Multiatom Quantum Coherences in Micromasers as Fuel for Thermal and Nonthermal Machines , 2015, Entropy.

[41]  Liu Ye,et al.  Realizing an efficient fusion gate for W states with cross-Kerr nonlinearities and QD-cavity coupled system , 2015, Quantum Inf. Process..

[42]  Fatih Ozaydin,et al.  Enhancing the W State Fusion Process With a Toffoli Gate and a CNOT Gate via One-Way Quantum Computation and Linear Optics , 2015 .

[43]  W. Dür Multipartite entanglement that is robust against disposal of particles , 2001 .

[44]  Can Yesilyurt,et al.  Enhancing the W State Quantum Network Fusion Process with A Single Fredkin Gate , 2013, 1303.4008.

[45]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[46]  Zhuo-Liang Cao,et al.  Deterministic generation of large scale atomic W states. , 2016, Optics express.

[47]  Jun Chen,et al.  Resolution and sensitivity of a Fabry-Perot interferometer with a photon-number-resolving detector , 2009, 0905.1085.

[48]  Z. Cao,et al.  Local expansion of atomic W state in cavity quantum electrodynamics , 2014 .

[49]  Can Yesilyurt,et al.  An optical gate for simultaneous fusion of four photonic W or Bell states , 2013, Quantum Inf. Process..

[50]  Dreyer,et al.  Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement. , 1996, Physical review letters.