The future of engineering tribology in concentrated contacts

Abstract This article attempts to anticipate likely trends and developments in the field of engineering tribology. It is, of course, a personal view and the authors have chosen to focus on the field of concentrated contacts operating in elastohydrodynamic lubrication (EHL), where they are tempted to make the kind of predictions required with at least a modicum of confidence. The main thrust of the argument presented is that engineering tribology will develop considerably, and move towards modelling failure of the EHL mechanism rather than simply explaining its successful operation.

[1]  G. M. Hamilton,et al.  Deformation and pressure in an elastohydrodynamic contact , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  A. J. Moore,et al.  Non-Newtonian behaviour in elastohydrodynamic lubrication , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  H. Naylor,et al.  Paper 10: The Measurement of Oil-Film Thickness in Elastohydrodynamic Contacts: , 1965 .

[4]  H. P. Evans,et al.  Coupled solution of the elastohydrodynamic line contact problem using a differential deflection method , 2000 .

[5]  Philippe Vergne,et al.  A finite element approach of thin film lubrication in circular EHD contacts , 2007 .

[6]  Zhongmin Jin,et al.  Transient Elastohydrodynamic Lubrication of Hip Joint Implants , 2008 .

[7]  C. J. Hooke Dynamic effects in EHL contacts , 2003 .

[8]  T. A. Harris,et al.  A New Fatigue Life Model for Rolling Bearings , 1985 .

[9]  H. P. Evans,et al.  Analysis of micro-elastohydrodynamic lubrication for engineering contacts , 1996 .

[10]  J. Tripp Surface Roughness Effects in Hydrodynamic Lubrication: The Flow Factor Method , 1983 .

[11]  Hideaki Okamura,et al.  Paper XI(iii) – A contribution to the numerical analysis of isothermal elastohydrodynamic lubrication , 1993 .

[12]  T. A. Crowe Some Recent Advances in Mechanical Engineering on Shipboard , 1948 .

[13]  A. Cameron,et al.  The solution of the point contact elasto-hydrodynamic problem , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  Andrew V. Olver,et al.  Effect of lubricants on micropitting and wear , 2008 .

[15]  C J Hooke,et al.  Rapid Calculation of the Pressures and Clearances in Rough, Elastohydrodynamically Lubricated Contacts Under Pure Rolling. Part 2: General Roughness , 2006 .

[16]  H. Cheng,et al.  An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication , 1978 .

[17]  D. Dowson,et al.  A Numerical Solution to the Elasto-Hydrodynamic Problem , 1959 .

[18]  Henry Peredur Evans,et al.  On the coupling of the elastohydrodynamic problem , 1998 .

[19]  R. Larsson,et al.  Thermal transient rough EHL line contact simulations by aid of computational fluid dynamics , 2008 .

[20]  Hugh Spikes,et al.  CFD Modeling of a Thermal and Shear-Thinning Elastohydrodynamic Line Contact , 2008 .

[21]  C. Hooke,et al.  Rapid calculation of the pressures and clearances in rough, rolling-sliding elastohydrodynamically lubricated contacts. Part 1: Low-amplitude, sinusoidal roughness , 2007 .

[22]  Sean B. Leen,et al.  Finite element simulation of fretting wear-fatigue interaction in spline couplings , 2008 .

[23]  S. Bair,et al.  Shear strength measurements of lubricants at high pressure , 1979 .

[24]  Motohiro Kaneta,et al.  Abnormal Phenomena Appearing in EHL Contacts , 1996 .

[25]  H. P. Evans,et al.  Elastohydrodynamic modelling of heat partition in rolling-sliding point contacts , 2007 .

[26]  Richard F. Salant,et al.  An Average Flow Model of Rough Surface Lubrication With Inter-Asperity Cavitation , 2001 .

[27]  A Oila,et al.  Assessment of the factors influencing micropitting in rolling/sliding contacts , 2005 .

[28]  D. Dowson,et al.  Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part III—Fully Flooded Results , 1976 .

[29]  Erwin Y. Zaretsky Fatigue criterion to system design, life and reliability: A primer , 1987 .

[30]  EHL Modeling for Nonhomogeneous Materials: The Effect of Material Inclusions , 2007 .

[31]  H. P. Evans,et al.  Transient elastohydrodynamic point contact analysis using a new coupled differential deflection method Part 1: Theory and validation , 2003 .

[32]  Henry Peredur Evans,et al.  Heat Partition in Rolling/Sliding Elastohydrodynamic Contacts , 2004 .

[33]  Henry Peredur Evans,et al.  Analysis of Mixed Lubrication Effects in Simulated Gear Tooth Contacts , 2005 .

[34]  H. P. Evans,et al.  Comparison of fatigue model results for rough surface elastohydrodynamic lubrication , 2008 .

[35]  A. W. CROOK Elastohydrodynamic Lubrication of Rollers , 1961, Nature.

[36]  A. Olver,et al.  An analysis of misaligned spline couplings , 2002 .

[37]  A. Palmgren,et al.  Dynamic capacity of rolling bearings , 1947 .

[38]  Henry Peredur Evans,et al.  Effect of elastohydrodynamic film thickness on a wear model for worm gears , 2006 .

[39]  R. Dwyer-Joyce Predicting the abrasive wear of ball bearings by lubricant debris , 1999 .

[40]  Duncan Dowson,et al.  Reflections on early studies of elasto-hydrodynamic lubrication , 2021, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology.

[41]  J. D. Cogdell,et al.  Debris Denting Effects on Elastohydrodynamic Lubricated Contacts , 1997 .

[42]  A. Dyson,et al.  The Failure of Elastohydrodynamic Lubrication of Circumferentially Ground Discs , 1976 .

[43]  B. J. Hamrock,et al.  Fast Approach for Calculating Film Thicknesses and Pressures in Elastohydrodynamically Lubricated Contacts at High Loads , 1986 .

[44]  F. Ville,et al.  Detrimental Effects of Debris Dents on Rolling Contact Fatigue , 2000 .

[45]  S. Bair,et al.  Thermal Elastohydrodynamic Lubrication of Point Contacts Using a Newtonian/Generalized Newtonian Lubricant , 2008 .