An Efficient Framework Using Normalized Dominance Operator for Multi-Objective Evolutionary Algorithms

Multi-objective optimization algorithms using evolutionary optimization methods have shown strengthinsolvingvariousproblemsusingseveraltechniquesforproducinguniformlydistributed setofsolutions.Inthisarticle,aframeworkispresentedtosolvethemulti-objectiveoptimization problemwhichimplementsanovelnormalizeddominanceoperator(ND)withtheParetodominance concept.Theproposedmethodhasalessercomputationalcostascomparedtocrowding-distance-based algorithmsandbetterconvergence.Aparallelexternalelitistarchiveisusedwhichenhancesspread ofsolutionsacrosstheParetofront.Theproposedalgorithmisappliedtoanumberofbenchmark multi-objectivetestproblemswithupto10objectivesandcomparedwithwidelyacceptedaggregationbasedtechniques.Experimentsproduceaconsistentlygoodperformancewhenappliedtodifferent recombinationoperators.Resultshavefurtherbeencomparedwithotherestablishedmethodstoprove effectiveconvergenceandscalability. KEywORDS Elitist Archive, Evolutionary Algorithm, Genetic Algorithm, Multi-Objective Optimization, Normalized Dominance Operator

[1]  Peter J. Fleming,et al.  On the Evolutionary Optimization of Many Conflicting Objectives , 2007, IEEE Transactions on Evolutionary Computation.

[2]  Qingfu Zhang,et al.  Multiobjective optimization Test Instances for the CEC 2009 Special Session and Competition , 2009 .

[3]  Hisao Ishibuchi,et al.  Empirical Analysis of Using Weighted Sum Fitness Functions in NSGA-II for Many-Objective 0/1 Knapsack Problems , 2009, 2009 11th International Conference on Computer Modelling and Simulation.

[4]  Kalyanmoy Deb,et al.  An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints , 2014, IEEE Transactions on Evolutionary Computation.

[5]  Xin Yao,et al.  Many-Objective Evolutionary Algorithms , 2015, ACM Comput. Surv..

[6]  Carlos A. Coello Coello,et al.  Ranking Methods for Many-Objective Optimization , 2009, MICAI.

[7]  Ye Tian,et al.  An Efficient Approach to Nondominated Sorting for Evolutionary Multiobjective Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[8]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[9]  Nicola Beume,et al.  Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization , 2007, EMO.

[10]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[11]  Sanjoy Das,et al.  A Multiobjective Evolutionary-Simplex Hybrid Approach for the Optimization of Differential Equation Models of Gene Networks , 2008, IEEE Transactions on Evolutionary Computation.

[12]  Kusum Deep,et al.  An interactive method using genetic algorithm for multi-objective optimization problems modeled in fuzzy environment , 2011, Expert Syst. Appl..

[13]  Marco Laumanns,et al.  Scalable test problems for evolutionary multi-objective optimization , 2001 .

[14]  Dan Li,et al.  Multiobjective optimization of structures with and without control , 1996 .

[15]  Evan J. Hughes Fitness Assignment Methods for Many-Objective Problems , 2008, Multiobjective Problem Solving from Nature.

[16]  Jun Zhang,et al.  Fuzzy-Based Pareto Optimality for Many-Objective Evolutionary Algorithms , 2014, IEEE Transactions on Evolutionary Computation.

[17]  Hisao Ishibuchi,et al.  Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms , 2006, PPSN.

[18]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[19]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[20]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[21]  Bijaya K. Panigrahi,et al.  Multi-objective optimization with artificial weed colonies , 2011, Inf. Sci..

[22]  Frederico G. Guimarães,et al.  A comparison of dominance criteria in many-objective optimization problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[23]  W. Stadler A survey of multicriteria optimization or the vector maximum problem, part I: 1776–1960 , 1979 .

[24]  Kalyanmoy Deb,et al.  Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions , 2005, Evolutionary Computation.

[25]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.