Rabi Splitting in Photoluminescence Spectra of Hybrid Systems of Gold Nanorods and J-Aggregates.

We experimentally and theoretically investigate the interactions between localized plasmons in gold nanorods and excitons in J-aggregates under ambient conditions. Thanks to our sample preparation procedure we are able to track a clear anticrossing behavior of the hybridized modes not only in the extinction but also in the photoluminescence (PL) spectra of this hybrid system. Notably, while previous studies often found the PL signal to be dominated by a single mode (emission from so-called lower polariton branch), here we follow the evolution of the two PL peaks as the plasmon energy is detuned from the excitonic resonance. Both the extinction and PL results are in good agreement with the theoretical predictions obtained for a model that assumes two interacting modes with a ratio between the coupling strength and the plasmonic losses close to 0.4, indicative of the strong coupling regime with a significant Rabi splitting estimated to be ∼200 meV. The evolution of the PL line shape as the plasmon is detuned depends on the illumination wavelength, which we attribute to an incoherent excitation given by decay processes in either the metallic rods or the J-aggregates.

[1]  Steven G. Johnson,et al.  Coherent plasmon-exciton coupling in silver platelet-J-aggregate nanocomposites. , 2015, Nano letters.

[2]  Jeremy J. Baumberg,et al.  Demonstrating Photoluminescence from Au is Electronic Inelastic Light Scattering of a Plasmonic Metal: The Origin of SERS Backgrounds , 2015, Nano letters.

[3]  S. Bozhevolnyi,et al.  Gold Photoluminescence Wavelength and Polarization Engineering , 2015, 1609.04930.

[4]  M. Käll,et al.  Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions. , 2015, Physical review letters.

[5]  Ephraim Sommer,et al.  Observation of Lorentzian lineshapes in the room temperature optical spectra of strongly coupled Jaggregate/metal hybrid nanostructures by linear two-dimensional optical spectroscopy , 2014 .

[6]  P. Kik,et al.  Gap-Plasmon Enhanced Gold Nanoparticle Photoluminescence , 2014 .

[7]  Jayan Thomas,et al.  Coupling Enhancement and Giant Rabi-Splitting in Large Arrays of Tunable Plexcitonic Substrates , 2014 .

[8]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters: a review , 2014, Reports on progress in physics. Physical Society.

[9]  Tomasz J. Antosiewicz,et al.  Plasmon–Exciton Interactions in a Core–Shell Geometry: From Enhanced Absorption to Strong Coupling , 2014 .

[10]  J. Aizpurua,et al.  Optical properties and sensing in plexcitonic nanocavities: from simple molecular linkers to molecular aggregate layers , 2014, Nanotechnology.

[11]  Davide Comoretto,et al.  Strong coupling between excitons in organic semiconductors and Bloch surface waves , 2013, 1312.7691.

[12]  Sinan Balci,et al.  Ultrastrong plasmon-exciton coupling in metal nanoprisms with J-aggregates. , 2013, Optics letters.

[13]  M. Käll,et al.  Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates , 2013, Scientific Reports.

[14]  Eloïse Devaux,et al.  Thermodynamics of molecules strongly coupled to the vacuum field. , 2013, Angewandte Chemie.

[15]  T. Ebbesen,et al.  Strong light-molecule coupling on plasmonic arrays of different symmetry. , 2013, ChemPhysChem.

[16]  Diana Savateeva,et al.  Strong Enhancement of Circular Dichroism in a Hybrid Material Consisting of J-Aggregates and Silver Nanoparticles , 2013 .

[17]  Nicolas Large,et al.  Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. , 2013, Nano letters.

[18]  Andrey L Rogach,et al.  Strong plasmon-exciton coupling in a hybrid system of gold nanostars and J-aggregates , 2013, Nanoscale Research Letters.

[19]  C. Manzoni,et al.  Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates , 2013, Nature Photonics.

[20]  T. Ebbesen,et al.  Polariton dynamics under strong light-molecule coupling. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  Omer Salihoglu,et al.  Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping , 2012 .

[22]  Joel K. W. Yang,et al.  Plasmon-modulated photoluminescence of individual gold nanostructures. , 2012, ACS nano.

[23]  F. García-Vidal,et al.  Weak and strong coupling regimes in plasmonic QED , 2012, 1209.1724.

[24]  Paul S Weiss,et al.  Molecular plasmonics for biology and nanomedicine. , 2012, Nanomedicine.

[25]  Y. Gartstein,et al.  Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons. , 2011, Physical review letters.

[26]  F. Würthner,et al.  J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials. , 2011, Angewandte Chemie.

[27]  G. Cirmi,et al.  Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures. , 2010, ACS nano.

[28]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[29]  B. K. Juluri,et al.  Dynamic Tuning of Plasmon–Exciton Coupling in Arrays of Nanodisk–J‐aggregate Complexes , 2010, Advanced materials.

[30]  P. Stadelmann,et al.  Core-shell gold J-aggregate nanoparticles for highly efficient strong coupling applications , 2010 .

[31]  Rosalba Saija,et al.  Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna. , 2010, ACS nano.

[32]  A. Lemaître,et al.  Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor , 2009 .

[33]  M. Pettersson,et al.  Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules. , 2009, Physical review letters.

[34]  F. Laussy,et al.  Luminescence spectra of quantum dots in microcavities. II. Fermions , 2008, 0812.2694.

[35]  Peter Nordlander,et al.  Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. , 2008, Nano letters.

[36]  G. Wiederrecht,et al.  Ultrafast hybrid plasmonics , 2008 .

[37]  A. Auffèves,et al.  Pure emitter dephasing: A resource for advanced solid-state single-photon sources , 2008, 0808.0820.

[38]  G. Bryant,et al.  Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked Fano structure and bistability. , 2008, Nano letters.

[39]  J. Plenet,et al.  Particularities of surface plasmon–exciton strong coupling with large Rabi splitting , 2008 .

[40]  Ulrich Hohenester,et al.  Strong coupling between a metallic nanoparticle and a single molecule , 2008, 0802.1630.

[41]  Wayne Dickson,et al.  Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies. , 2007, Nano letters.

[42]  V. Bulović,et al.  Solid state cavity QED: Strong coupling in organic thin films , 2007 .

[43]  G. Wiederrecht,et al.  Control of molecular energy redistribution pathways via surface plasmon gating. , 2007, Physical review letters.

[44]  M E Abdelsalam,et al.  Strong coupling between localized plasmons and organic excitons in metal nanovoids. , 2006, Physical review letters.

[45]  J. Plenet,et al.  Polaritonic emission via surface plasmon cross coupling , 2006 .

[46]  M. Atatüre,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2006, Nature.

[47]  J. Plenet,et al.  Properties of surface plasmons strongly coupled to excitons in an organic semiconductor near a metallic surface , 2006 .

[48]  Philippe Guyot-Sionnest,et al.  Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. , 2005, The journal of physical chemistry. B.

[49]  L. Liz‐Marzán,et al.  Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes. , 2005, The journal of physical chemistry. B.

[50]  William L. Barnes,et al.  Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays , 2005 .

[51]  Thomas A. Klar,et al.  Plasmon emission in photoexcited gold nanoparticles , 2004 .

[52]  Gary P. Wiederrecht,et al.  Coherent Coupling of Molecular Excitons to Electronic Polarizations of Noble Metal Nanoparticles , 2004 .

[53]  J. Mugnier,et al.  Strong coupling between surface plasmons and excitons in an organic semiconductor. , 2004, Physical review letters.

[54]  David G. Lidzey,et al.  Cavity polaritons in microcavities containing disordered organic semiconductors , 2003 .

[55]  Donal D. C. Bradley,et al.  Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities , 1999 .

[56]  T. Reinecke,et al.  Oscillator model for vacuum Rabi splitting in microcavities , 1999 .

[57]  P. Knight,et al.  The Jaynes-Cummings Model , 1993 .

[58]  C. Savage Quantum Optics with One Atom in an Optical Cavity , 1990 .

[59]  J. Aizpurua,et al.  Strong coupling of single emitters interacting with phononic infrared antennae , 2014 .

[60]  F. Laussy,et al.  9 – Luminescence spectra of quantum dots in microcavities , 2012 .

[61]  Jianfang Wang,et al.  Plasmon–molecule interactions , 2010 .

[62]  Rui Zhang,et al.  Generation of molecular hot electroluminescence by resonant nanocavity plasmons , 2010 .

[63]  Tobias Ambjörnsson,et al.  Observing plasmonic-molecular resonance coupling on single gold nanorods. , 2010, Nano letters.