A NOVEL CONTROL ALGORITHM FOR INTEGRATION OF ACTIVE AND PASSIVE VEHICLE SAFETY SYSTEMS IN FRONTAL COLLISIONS

The present paper investigates an approach to integrate active and passive safety systems of passenger cars. Worldwide, the introduction of Integrated Safety Systems and Advanced Driver Assistance Systems (ADAS) is considered to continue the today's trend of reduction of traffic accidents and mitigating their severity and consequences. An algorithm is proposed in this paper where force levels and activation times of an adaptive restraint system are calculated based on the actual crash scenario. The method takes into account the crash severity by a forecast of the acceleration behaviour of the passenger cell. This is calculated by a simplified multi body model of the impact, considering input data from an environment recognition system. The vehicle deformations are simulated using non-linear springs with hysteresis. The characteristics of the springs are derived from NHTSA's crash database. The occupant of the ego-vehicle is considered also by a simplified rigid body model, taking into account mass and seating position of the occupant. Optimal force levels and trigger times of the adaptive restraint system are calculated in order to minimise the acceleration of the occupant.