Regulating solvation sheath by introducing multifunctional fluoride boronic esters for highly efficient magnesium stripping/plating

[1]  Qinyou An,et al.  Efficient boron-based electrolytes constructed by anionic and interfacial co-regulation for rechargeable magnesium batteries , 2023, Chemical Engineering Journal.

[2]  Qinyou An,et al.  Revealing the Interfacial Chemistry of Fluoride Alkyl Magnesium Salts in Magnesium Metal Batteries. , 2023, Angewandte Chemie.

[3]  Aobing Du,et al.  Cathode Electrolyte Interphase (CEI) Enables Mo6S8 with Fast Interfacial Magnesium-Ion Transfer Kinetic. , 2023, Angewandte Chemie.

[4]  Baohua Li,et al.  Synergistic-Effect of Diluent to Reinforce Anion-Solvation-Derived Interfacial Chemistry for 4.5v−Class Li||Licoo2 Batteries , 2023, SSRN Electronic Journal.

[5]  J. Niu,et al.  A BF3‐Doped MXene Dual‐Layer Interphase for a Reliable Lithium‐Metal Anode , 2022, Advanced materials.

[6]  H. Xiang,et al.  Regulating Zn(002) Deposition toward Long Cycle Life for Zn Metal Batteries , 2022, ACS Energy Letters.

[7]  Xiaoli Zhao,et al.  Chloride-Free Electrolytes for High Voltage Magnesium Metal Batteries: Challenges, Strategies, and Perspective. , 2022, Chemistry.

[8]  Yuegang Zhang,et al.  Cosolvent‐Assisted Formation of Charged Ion‐Solvent Clusters and Solid Electrolyte Interphase for High‐Performance Magnesium Metal Batteries , 2022, Advanced Energy Materials.

[9]  Qinyou An,et al.  Basal Planes Unlocking and Interlayer Engineering Endows Proton Doped-MoO2.8F0.2 with Fast and Stable Magnesium Storage. , 2022, ACS nano.

[10]  Yaoguang Rong,et al.  Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries , 2022, National science review.

[11]  Yitai Qian,et al.  Towards better Mg metal anodes in rechargeable Mg batteries: Challenges, strategies, and perspectives , 2022, Energy Storage Materials.

[12]  Jiulin Wang,et al.  Efficient Single-perfluorinated Borate-based Electrolytes for Rechargeable Magnesium Batteries , 2022, Energy Storage Materials.

[13]  Yuegang Zhang,et al.  Stable Solid Electrolyte Interphase In Situ Formed on Magnesium‐Metal Anode by using a Perfluorinated Alkoxide‐Based All‐Magnesium Salt Electrolyte , 2022, Advanced materials.

[14]  Z. Zuo,et al.  Tailoring Coordination in Conventional Ether-based Electrolytes for Reversible Magnesium Metal Anodes. , 2022, Angewandte Chemie.

[15]  Jun Ming,et al.  A Robust Li-Intercalated Interlayer with Strong Electron Withdrawing Ability Enables Durable and High-Rate Li Metal Anode , 2022, ACS Energy Letters.

[16]  Jiangfeng Song,et al.  Research advances of magnesium and magnesium alloys worldwide in 2021 , 2022, Journal of Magnesium and Alloys.

[17]  Yi‐Chun Lu,et al.  Electrolyte and Interphase Design for Magnesium Anode: Major Challenges and Perspectives. , 2022, Small.

[18]  Fan Zhang,et al.  Rational Design Strategy of Novel Energy Storage Systems: Toward High-Performance Rechargeable Magnesium Batteries. , 2022, Small.

[19]  F. Pan,et al.  Facile and Economic Synthesis of Robust Non-Nucleophilic Electrolyte for High-Performance Rechargeable Magnesium Batteries. , 2022, ACS applied materials & interfaces.

[20]  Yunlong Zhao,et al.  Low‐strain TiP2O7 with three‐dimensional ion channels as long‐life and high‐rate anode material for Mg‐ion batteries , 2022, Interdisciplinary Materials.

[21]  Bin Wang,et al.  Solvate ionic liquid derived solid polymer electrolyte with lithium bis(oxalato) borate as a functional additive for solid-state lithium metal batteries , 2022, Journal of Materials Chemistry A.

[22]  Aobing Du,et al.  Current Design Strategies for Rechargeable Magnesium-Based Batteries. , 2021, ACS nano.

[23]  O. Borodin,et al.  Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics , 2021, Science.

[24]  Z. Seh,et al.  Using a Chloride-Free Magnesium Battery Electrolyte to Form a Robust Anode-Electrolyte Nanointerface. , 2021, Nano letters.

[25]  Jiulin Wang,et al.  An Efficient Bulky Mg[B(Otfe)4]2 Electrolyte and Its Derivatively General Design Strategy for Rechargeable Magnesium Batteries , 2021, ACS Energy Letters.

[26]  S. Kilian,et al.  Uncovering electrochemistries of rechargeable magnesium-ion batteries at low and high temperatures , 2021 .

[27]  Dongsheng Xu,et al.  Hybrid MgCl2/AlCl3/Mg(TFSI)2 Electrolytes in DME Enabling High-Rate Rechargeable Mg Batteries. , 2021, ACS applied materials & interfaces.

[28]  Yaoguang Rong,et al.  Designs and Applications of Multi-functional Covalent Organic Frameworks in Rechargeable Batteries , 2021 .

[29]  Pengjian Zuo,et al.  A Review of Magnesium Aluminum Chloride Complex Electrolytes for Mg Batteries , 2021, Advanced Functional Materials.

[30]  Z. Seh,et al.  A High-Performance Magnesium Triflate-based Electrolyte for Rechargeable Magnesium Batteries , 2020, Cell Reports Physical Science.

[31]  Yan Yao,et al.  High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes , 2020, Nature Energy.

[32]  Ke-Jing Huang,et al.  Progress in retrospect of electrolytes for secondary magnesium batteries , 2020 .

[33]  Toshihiko Mandai Critical Issues of Fluorinated Alkoxyborate-Based Electrolytes in Magnesium Battery Applications. , 2020, ACS applied materials & interfaces.

[34]  L. Mai,et al.  Crystal regulation towards rechargeable magnesium battery cathode materials , 2020 .

[35]  Chunhua Han,et al.  A high-efficient non-nucleophilic Mg(CF3SO3)2-based electrolyte for high-power Mg/S battery. , 2020, ACS applied materials & interfaces.

[36]  Fangyu Xiong,et al.  Hierarchical copper sulfide porous nanocages for rechargeable multivalent-ion batteries. , 2020, ACS applied materials & interfaces.

[37]  K. See,et al.  Conditioning-Free Mg Electrolyte by the Minor Addition of Mg(HMDS)2. , 2019, ACS applied materials & interfaces.

[38]  R. Deivanayagam,et al.  Progress in development of electrolytes for magnesium batteries , 2019, Energy Storage Materials.

[39]  D. Aurbach,et al.  The Power of Stoichiometry: Conditioning and Speciation of MgCl2/AlCl3 in TEGDME-based Electrolytes. , 2019, ACS applied materials & interfaces.

[40]  Dongsheng Xu,et al.  Electrochemical-Conditioning-Free and Water-Resistant Hybrid AlCl3 /MgCl2 /Mg(TFSI)2 Electrolytes for Rechargeable Magnesium Batteries. , 2019, Angewandte Chemie.

[41]  C. Cao,et al.  Microwave-Assisted Synthesis of CuS Hierarchical Nanosheets as the Cathode Material for High-Capacity Rechargeable Magnesium Batteries. , 2019, ACS applied materials & interfaces.

[42]  D. Aurbach,et al.  Anode-Electrolyte Interfaces in Secondary Magnesium Batteries , 2019, Joule.

[43]  Yi Cui,et al.  Improving a Mg/S Battery with YCl3 Additive and Magnesium Polysulfide , 2018, Advanced science.

[44]  Weishan Li,et al.  Kinetic surface control for improved magnesium-electrolyte interfaces for magnesium ion batteries , 2019, Energy Storage Materials.

[45]  Guangmin Zhou,et al.  A non-nucleophilic mono-Mg2+ electrolyte for rechargeable Mg/S battery , 2018, Energy Storage Materials.

[46]  A. Manthiram,et al.  Toward Highly Reversible Magnesium–Sulfur Batteries with Efficient and Practical Mg[B(hfip)4]2 Electrolyte , 2018, ACS Energy Letters.

[47]  Zhongxue Chen,et al.  Copper sulfide nanoparticles as high-performance cathode materials for magnesium secondary batteries. , 2018, Nanoscale.

[48]  Kang Xu,et al.  Reversible S0 /MgSx Redox Chemistry in a MgTFSI2 /MgCl2 /DME Electrolyte for Rechargeable Mg/S Batteries. , 2017, Angewandte Chemie.

[49]  T. L. Liu,et al.  Tertiary Mg/MgCl2/AlCl3 Inorganic Mg2+ Electrolytes with Unprecedented Electrochemical Performance for Reversible Mg Deposition , 2017 .

[50]  Yuegang Zhang,et al.  Synthesis, Crystal Structure, and Electrochemical Properties of a Simple Magnesium Electrolyte for Magnesium/Sulfur Batteries. , 2016, Angewandte Chemie.

[51]  L. Nazar,et al.  A conditioning-free magnesium chloride complex electrolyte for rechargeable magnesium batteries , 2016 .

[52]  R. Nuzzo,et al.  Exploring salt and solvent effects in chloride-based electrolytes for magnesium electrodeposition and dissolution , 2015 .

[53]  Nav Nidhi Rajput,et al.  The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics. , 2015, Journal of the American Chemical Society.

[54]  Yuyan Shao,et al.  A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries , 2014 .

[55]  Doron Aurbach,et al.  Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. , 2014, Chemical communications.

[56]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[57]  D. Aurbach,et al.  Electrolyte Solutions with a Wide Electrochemical Window for Rechargeable Magnesium Batteries , 2008 .

[58]  D. Aurbach,et al.  Molten salt synthesis (MSS) of Cu2Mo6S8—New way for large-scale production of Chevrel phases , 2006 .

[59]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.