Production and financial linkages in inter-firm networks: structural variety, risk-sharing and resilience

The paper analyzes how (production and financial) inter-firm networks can affect firms’ default probabilities and observed default rates. A simple theoretical model of shock transfer is built to investigate some stylized facts on how firm-idiosyncratic shocks are allocated in the network, and how this allocation changes firm default probabilities. The model shows that the network works as a perfect “risk-pooling” mechanism, when it is both strongly connected and symmetric. But the “risk-sharing” does not necessarily reduce default rates, unless the shock firms face is lower on average than their financial capacity. Conceived as cases of symmetric inter-firm networks, industrial districts might have a comparative disadvantage in front of heavy crises.

[1]  Matthew O. Jackson,et al.  Naïve Learning in Social Networks and the Wisdom of Crowds , 2010 .

[2]  Ilaria Giannoccaro,et al.  Supply chain cooperation in industrial districts: A simulation analysis , 2007, Eur. J. Oper. Res..

[3]  Ron Boschma,et al.  Knowledge, Market Structure, and Economic Coordination: Dynamics of Industrial Districts , 2002 .

[4]  Ivana Paniccia One, a Hundred, Thousands of Industrial Districts. Organizational Variety in Local Networks of Small and Medium-sized Enterprises , 1998 .

[5]  Debraj Ray,et al.  Bureau for Research and Economic Analysis of DevelopmentInformal Insurance in Social Networks , 2005 .

[6]  G. Becattini,et al.  Industrial districts and inter-firm co-operation in Italy , 1990 .

[7]  P. Pontrandolfo,et al.  Supply chains within industrial districts: A theoretical framework , 2002 .

[8]  Mauro Gallegati,et al.  Adaptive Microfoundations for Emergent Macroeconomics , 2008 .

[9]  B. Rogers A Strategic Theory of Network Status 1 , 2006 .

[10]  L. Bonatti,et al.  The Future of the Sino-American Co-Dependency , 2010 .

[11]  R. Shiller The Subprime Solution , 2012 .

[12]  Ron Boschma,et al.  Co-evolution of Firms, Industries and Networks in Space , 2011 .

[13]  Dunia López-Pintado,et al.  Diffusion in complex social networks , 2008, Games Econ. Behav..

[14]  Daniel E. Whitney,et al.  Cascades of Rumors and Information in Highly Connected Networks with Thresholds , 2009 .

[15]  Hugo Hollanders,et al.  The impact of the economic crisis on innovation - Analysis based on the Innobarometer 2009 survey , 2009 .

[16]  M. Petersen,et al.  Trade Credit: Theories and Evidence , 1996 .

[17]  Ilaria Giannoccaro,et al.  Innovation in industrial districts: An agent-based simulation model , 2006 .

[18]  J. Hudson A DIAMOND ANNIVERSARY , 1979 .

[19]  F. Brioschi,et al.  Ownership linkages and business groups in industrial districts. The case of Emilia Romagna , 2004 .

[20]  Andrea Filippo Presbitero,et al.  Banche e Imprese nei Distretti Industriali , 2008 .

[21]  B. Golub,et al.  Naive Learning in Social Networks: Convergence, Influence and Wisdom of Crowds , 2007 .

[22]  Roberto Zoboli,et al.  The Evolution of Industrial Districts Changing Governance, Innovation and Internationalisation of Local Capitalism in Italy , 2004 .

[23]  Antonello E. Scorcu,et al.  Demand distribution dynamics in creative industries: The market for books in Italy , 2008, Inf. Econ. Policy.

[24]  Sandro Montresor,et al.  Spatial agglomeration and firm exit: a spatial dynamic analysis for Italian provinces , 2014 .

[25]  Matthew O. Jackson,et al.  Näıve Learning in Social Networks : Convergence , Influence , and the Wisdom of Crowds ∗ , 2007 .

[26]  M. Gallegati,et al.  On the mean/variance relationship of the firm size distribution: evidence and some theory , 2012 .

[27]  Kumaraswamy Vela Vellupilai The Mathematization of Macroeconomics. A Recursive Revolution , 2008 .

[28]  A. Markusen Sticky Places in Slippery Space: A Typology of Industrial Districts* , 1996 .

[29]  Alberto Baffigi,et al.  Lo sviluppo locale : un'indagine della Banca d'Italia sui distretti industriali , 2000 .

[30]  Lorenzo Sacconi,et al.  A Theoretical Analysis of the Relationship between Social Capital and Corporate Social Responsibility: Concepts and Definitions , 2008 .

[31]  Adilson E Motter,et al.  Cascade-based attacks on complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  A. Zazzaro,et al.  Global Banking and Local Markets: A National Perspective , 2009 .

[33]  Rachel Kranton,et al.  Risk-Sharing Networks , 2005 .

[34]  Nunzia Carbonara,et al.  New models of inter-firm networks within industrial districts , 2002 .

[35]  P. DeMarzo,et al.  Persuasion Bias, Social Influence, and Uni-Dimensional Opinions , 2001 .

[36]  Contagion effects of the US Subprime Crisis on Developed Countries , 2008 .

[37]  C. Karlsson Handbook of Research on Cluster Theory , 2010 .

[38]  Allen N. Berger,et al.  Small Business Credit Availability and Relationship Lending: The Importance of Bank Organisational Structure , 2001 .

[39]  M. Storper,et al.  Flexible Specialization and Regional Industrial Agglomerations: The Case of the U.S. Motion Picture Industry , 1987 .

[40]  Mauro Gallegati,et al.  A look at the relationship between industrial dynamics and aggregate fluctuations , 2009 .

[41]  A. Muñiz,et al.  Linkages, contagion and resilience: an input-output scope from the demand and supply side , 2012 .

[42]  Lisa De Propris,et al.  A Handbook of Industrial Districts , 2009 .

[43]  O. Williamson Credible Commitments: Using Hostages to Support Exchange , 1983 .

[44]  R. Frenkel,et al.  A developing country view of the current global crisis: what should not be forgotten and what should be done , 2009 .

[45]  FLEXIBLE SPECIALISATION AND THE COMPETITIVE FAILURE OF UK MANUFACTURING , 1989 .

[46]  A. Zazzaro,et al.  Global Banking and Local Markets , 2008 .

[47]  M. Bee,et al.  Dynamic VaR models and the Peaks over Threshold method for market risk measurement: an empirical investigation during a financial crisis , 2012 .

[48]  Alessandro Vespignani,et al.  Epidemic dynamics in finite size scale-free networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  John G. Kemeny,et al.  Finite Markov Chains. , 1960 .

[50]  Elisabetta De Antoni,et al.  Minsky�s Upward Instability: the Not-Too-Keynesian Optimism of a Financial Cassandra , 2008 .

[51]  Yann Bramoullé,et al.  Risk Sharing Across Communities , 2007 .

[52]  Giulio Cainelli,et al.  From the industrial district to the district group: An insight into the evolution of capitalism in italy1 , 2002 .

[53]  M. Pugno,et al.  Job Performance and Job Satisfaction: An Integrated Survey , 2009 .

[54]  Marco Bee,et al.  On maximum likelihood estimation of a Pareto mixture , 2013, Comput. Stat..

[55]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[56]  Emanuele Campiglio,et al.  Mobility Systems and Economic Growth: a Theoretical Analysis of the Long-Term Effects of Alternative Transportation Policies , 2009 .

[57]  Mauro Gallegati,et al.  The Asymmetric Effect of Diffusion Processes: Risk Sharing and Contagion , 2008 .

[58]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[59]  M. Cropper,et al.  Sulfur Dioxide Control by Electric Utilities: What Are the Gains from Trade? , 1998, Journal of Political Economy.

[60]  G. Cainelli Industrial Districts: Theoretical and Empirical Insights , 2008 .

[61]  Kenneth Rogoff,et al.  Is the 2007 US sub-prime financial crisis so different?: An international historical comparison , 2009 .

[62]  G. Abatecola Crisis in the European Automobile Industry: An “Organizational Adaptation” Perspective , 2009 .

[63]  Philip H. Dybvig,et al.  Bank Runs, Deposit Insurance, and Liquidity , 1983, Journal of Political Economy.

[64]  Marcello Pagnini,et al.  Industrial districts and local banks : do the twins ever meet? , 1999 .

[65]  Kenneth Rogoff,et al.  Is the 2007 U.S. Sub-Prime Financial Crisis so Different? an International Historical Comparison , 2008 .

[66]  Marcel Fafchamps,et al.  The formation of risk sharing networks , 2007 .

[67]  Massimo Riccaboni,et al.  Technological change and network dynamics: Lessons from the pharmaceutical industry , 2001 .

[68]  G. Wood,et al.  Transaction Costs, Agglomeration Economies, and Industrial Location* , 2005 .

[69]  Duncan J Watts,et al.  A simple model of global cascades on random networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[70]  M. Degroot Reaching a Consensus , 1974 .

[71]  M. Petersen,et al.  Trade Credit: Theories and Evidence , 1996 .

[72]  E. Ughetto Industrial districts and financial constraints to innovation , 2009 .

[73]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[74]  Ron Boschma,et al.  The Dynamics of Agglomeration Externalities along the Life Cycle of Industries , 2011 .

[75]  B. Nordstrom FINITE MARKOV CHAINS , 2005 .

[76]  Paola Rossi,et al.  Credit constraints in Italian industrial districts , 2001 .

[77]  Giulio Cainelli,et al.  The evolution of industrial districts , 2004 .

[78]  Marco Faillo,et al.  Conformity, Reciprocity and the Sense of Justice how Social Contract-Based Preferences and Beliefs Explain Norm Compliance: The Experimental Evidence , 2008 .

[79]  A. Zazzaro,et al.  Bank’s Localism and Industrial Districts , 2008 .

[80]  P. Perkins A theorem on regular matrices. , 1961 .

[81]  Antoni Calvó-Armengol,et al.  Centre De Referència En Economia Analítica Barcelona Economics Working Paper Series Working Paper Nº 178 Who's Who in Networks. Wanted: the Key Player Who's Who in Networks. Wanted: the Key Player Barcelona Economics Wp Nº 178 , 2022 .

[82]  Franklin Allen,et al.  Financial Contagion Journal of Political Economy , 1998 .

[83]  P. Bonacich Power and Centrality: A Family of Measures , 1987, American Journal of Sociology.

[84]  G. D. Ottati Trust, interlinking transactions and credit in the industrial district , 1994 .

[85]  Bennett Harrison,et al.  Industrial Districts: Old Wine in New Bottles? , 1992 .

[86]  S. Goyal,et al.  R&D Networks , 2000 .

[87]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[88]  C. Gilbert,et al.  Managing Agricultural Price Risk in Developing Countries , 2008 .

[89]  Gauti B. Eggertsson,et al.  Debt, Deleveraging, and the Liquidity Trap: A Fisher-Minsky-Koo Approach* , 2012 .

[90]  Giulia Iori,et al.  Systemic Risk on the Interbank Market , 2004 .

[91]  S. Battiston,et al.  Liaisons Dangereuses: Increasing Connectivity, Risk Sharing, and Systemic Risk , 2009 .

[92]  F. Brioschi,et al.  From the Industrial District to the District Group . An Insight into the Evolution of Local Capitalism in Italy * , 2001 .

[93]  D. Watts,et al.  A generalized model of social and biological contagion. , 2005, Journal of theoretical biology.

[94]  Stefania Ottone,et al.  Compliance by Believing: An Experimental Exploration on Social Norms and Impartial Agreements , 2008 .

[95]  M. Storper The Resurgence of Regional Economies, Ten Years Later , 1995 .

[96]  Franklin Allen,et al.  Financial Contagion , 2000, Journal of Political Economy.

[97]  Sanjeev Goyal,et al.  Networks of collaboration in oligopoly , 2000, Games Econ. Behav..

[98]  J. Yang,et al.  Network Models and Financial Stability , 2008 .

[99]  P. Arestis,et al.  Financial globalisation and crisis, institutional transformation and equity , 2010 .

[100]  Giuseppe Arbia,et al.  Weighting Ripley’s K-Function to Account for the Firm Dimension in the Analysis of Spatial Concentration , 2014 .

[101]  M. Bee Simulating copula-based distributions and estimating tail probabilities by means of Adaptive Importance Sampling , 2010 .

[102]  Paolo Guerrieri,et al.  The Global Challenge to Industrial Districts: Small and Medium Sized Enterprises in Italy and Taiwan , 2001 .