Prefraction displacement and intrafraction drift of the prostate due to perineal ultrasound probe pressure

ObjectiveIn image-guided EBRT of the prostate, transperineal ultrasound (US) probes exert pressure on the perineum both during planning and treatment. Through tissue deformation and relaxation, this causes target and risk organ displacement and drift. In this study, prefraction shift and intrafraction drift of the prostate are quantified during robotic transperineal 4DUS.MethodsThe position of the prostate was recorded for different positions of the probe before treatment in 10 patients (16 series of measurements). During treatment (15 patients, 273 fractions), intrafraction motion of the prostate was tracked (total of 27 h and 24 min) with the transperineal probe in place.ResultsPer 1 mm shift of the US probe in the cranial direction, a displacement of the prostate by 0.42 ± 0.09 mm in the cranial direction was detected. The relationship was found to be linear (R² = 0.97) and highly significant (p < 0.0001). After initial contact of the probe and the perineum (no pressure), a shift of the probe of about 5–10 mm was typically necessary to achieve good image quality, corresponding to a shift of the prostate of about 2–4 mm in the cranial direction. Tissue compression and prostate displacement were well visible. During treatment, the prostate drifted at an average rate of 0.075 mm/min in the cranial direction (p = 0.0014).ConclusionThe pressure applied by a perineal US probe has a quantitatively similar impact on prostate displacement as transabdominal pressure. Shifts are predominantly in the cranial direction (typically 2–4 mm) with some component in the anterior direction (typically <1 mm). Slight probe pressure can improve image quality, but excessive probe pressure can distort the surrounding anatomy and potentially move risk organs closer to the high-dose area.ZusammenfassungZielsetzungIn der bildgeführten Strahlentherapie der Prostata üben perineale Ultraschallköpfe während Planung und Behandlung Druck auf das Perineum aus. Durch Gewebedeformation verursacht dies Verschiebungen von Zielvolumen und Risikoorganen. In dieser Studie werden Verschiebungen vor und Relaxationen während der Behandlung unter transperinealem orts- und zeitaufgelöstem Ultraschall (US) quantifiziert.MethodenVor der Behandlung (10 Patienten, 16 Messreihen) wurde die Lage der Prostata bei verschiedenen Schallkopfpositionen aufgezeichnet. Während der Behandlung (15 Patienten, 273 Fraktionen) mit anliegender perinealer Probe wurde die intrafraktionelle Bewegung der Prostata aufgezeichnet (insgesamt 27 h 24 min).ErgebnissePro 1 mm Verschiebung des Schallkopfs nach kranial verschob sich die Prostata um 0,42 ± 0,09 mm, ebenfalls in kranialer Richtung. Der Zusammenhang war linear (R² = 0,97) und hoch signifikant (p < 0,0001). Nach drucklosem Kontakt des US-Kopfs war für eine gute Bildqualität eine Verschiebung in das Perineum um typischerweise 5–10 mm notwendig, was einer Verschiebung der Prostata von etwa 2–4 mm in kranialer Richtung entspricht. Gewebedeformation und Prostataverschiebung waren deutlich sichtbar. Während der Behandlung driftete die Prostata mit einer mittleren Rate von 0,075 mm/min in kranialer Richtung (p = 0,0014).SchlussfolgerungDer Druck des perinealen Schallkopfs hat ähnlich großen Einfluss auf die Lage der Prostata, wie derjenige eines abdominellen. Verschiebungen geschehen hauptsächlich in kranialer Richtung (typisch 2–4 mm) mit einer geringen Komponente in ventraler Richtung (typisch <1 mm). Mäßiger Druck des Schallkopfs kann die Bildqualität verbessern, übergroßer Druck jedoch die umliegende Anatomie verformen und potentiell Risikoorgane in Regionen höherer Dosis verschieben.

[1]  Claus Belka,et al.  Technical Note: Millimeter precision in ultrasound based patient positioning: experimental quantification of inherent technical limitations. , 2014, Medical physics.

[2]  P. Kupelian,et al.  An endorectal balloon reduces intrafraction prostate motion during radiotherapy. , 2012, International journal of radiation oncology, biology, physics.

[3]  C. Belka,et al.  Surface refraction of sound waves affects calibration of three-dimensional ultrasound , 2015, Radiation oncology.

[4]  Barbara Dobler,et al.  Evaluation of Possible Prostate Displacement Induced by Pressure Applied during Transabdominal Ultrasound Image Acquisition , 2006, Strahlentherapie und Onkologie.

[5]  Andrew H. Gee,et al.  Correction of Probe Pressure Artifacts in Freehand 3D Ultrasound , 2001, MICCAI.

[6]  John P McGahan,et al.  Ultrasound probe pressure as a source of error in prostate localization for external beam radiotherapy. , 2004, International journal of radiation oncology, biology, physics.

[7]  Richard W Prager,et al.  RF and amplitude-based probe pressure correction for 3D ultrasound. , 2005, Ultrasound in medicine & biology.

[8]  C. Deville,et al.  A study to quantify the effectiveness of daily endorectal balloon for prostate intrafraction motion management. , 2012, International journal of radiation oncology, biology, physics.

[9]  Simon Rit,et al.  Impact of probe pressure variability on prostate localization for ultrasound-based image-guided radiotherapy. , 2014, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[10]  C. Belka,et al.  A comparative assessment of prostate positioning guided by three-dimensional ultrasound and cone beam CT , 2015, Radiation Oncology.

[11]  M. Lachaine,et al.  INTRAFRACTIONAL PROSTATE MOTION MANAGEMENT WITH THE CLARITY AUTOSCAN SYSTEM , 2013 .

[12]  Graham M. Treece,et al.  Evaluation of a three-dimensional ultrasound localisation system incorporating probe pressure correction for use in partial breast irradiation. , 2009, The British journal of radiology.