CENTER-SURROUND INTERACTIONS IN VISUAL MOTION PROCESSING By Duje Tadin

[1]  S. Hecht,et al.  ENERGY, QUANTA, AND VISION , 1942, The Journal of general physiology.

[2]  G. Brindley The physiology of the retina and visual pathways , 1962 .

[3]  G. Westheimer Spatial interaction in human cone vision , 1967, The Journal of physiology.

[4]  A. Ahumada,et al.  Stimulus Features in Signal Detection , 1971 .

[5]  K. Nakayama,et al.  Optical Velocity Patterns, Velocity-Sensitive Neurons, and Space Perception: A Hypothesis , 1974, Perception.

[6]  J. Lappin,et al.  The detection of coherence in moving random-dot patterns , 1976, Vision Research.

[7]  P. Lennie The physiological basis of variations in visual latency , 1981, Vision Research.

[8]  K. Nakayama,et al.  Single visual neurons code opposing motion independent of direction. , 1983, Science.

[9]  John H. R. Maunsell,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. , 1983, Journal of neurophysiology.

[10]  D. Regan,et al.  Figure-ground segregation by motion contrast and by luminance contrast. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[11]  J Allman,et al.  Direction- and Velocity-Specific Responses from beyond the Classical Receptive Field in the Middle Temporal Visual Area (MT) , 1985, Perception.

[12]  G. Mandl Responses of visual cells in cat superior colliculus to relative pattern movement , 1985, Vision Research.

[13]  K. Nakayama,et al.  Detection and discrimination of sinusoidal grating displacements. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[14]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[15]  D. Burr,et al.  Receptive field size of human motion detection units , 1987, Vision Research.

[16]  田中 啓治 Analysis of Local and Wide-Field Movements in the Superior Temporal Visual Areas of the Macaque Monkey , 1987 .

[17]  P. Cavanagh,et al.  Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[18]  G. Orban,et al.  Laminar analysis of motion information processing in macaque V5 , 1989, Brain Research.

[19]  A. Derrington,et al.  Failure of motion discrimination at high contrasts: Evidence for saturation , 1989, Vision Research.

[20]  D. Regan Orientation discrimination for objects defined by relative motion and objects defined by luminance contrast , 1989, Vision Research.

[21]  R. Sekuler,et al.  Assimilation and contrast in motion perception: Explorations in cooperativity , 1990, Vision Research.

[22]  R A Andersen,et al.  The response of area MT and V1 neurons to transparent motion , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  R. Blake,et al.  The interplay between stereopsis and structure from motion , 1991, Perception & psychophysics.

[24]  L. Cormack,et al.  Interocular correlation, luminance contrast and cyclopean processing , 1991, Vision Research.

[25]  D. B. Bender,et al.  Selectivity for relative motion in the monkey superior colliculus. , 1991, Journal of neurophysiology.

[26]  D. Regan,et al.  Recognition of motion-defined shapes in patients with multiple sclerosis and optic neuritis. , 1991, Brain : a journal of neurology.

[27]  D. Burr,et al.  Spatial summation properties of directionally selective mechanisms in human vision. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[28]  Maggie Shiffrar,et al.  The influence of terminators on motion integration across space , 1992, Vision Research.

[29]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  D. Regan,et al.  Motion‐defined letter detection and recognition in patients with multiple sclerosis , 1992, Annals of neurology.

[31]  D. Regan,et al.  Visual processing of motion-defined form: selective failure in patients with parietotemporal lesions , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  A. Cowey,et al.  The Effect of Removing Superior Temporal Cortical Motion Areas in the Macaque Monkey: II. Motion Discrimination Using Random Dot Displays , 1992, The European journal of neuroscience.

[33]  S. Shimojo,et al.  Motion capture changes to induced motion at higher luminance contrasts, smaller eccentricities, and larger inducer sizes , 1993, Vision Research.

[34]  O. Braddick Segmentation versus integration in visual motion processing , 1993, Trends in Neurosciences.

[35]  J S Tittle,et al.  Recovery of 3-D shape from binocular disparity and structure from motion , 1993, Perception & psychophysics.

[36]  P. H. Schiller,et al.  The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey , 1993, Visual Neuroscience.

[37]  Q. Zaidi,et al.  Effect of spatial configuration on motion aftereffects. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[38]  J. Movshon,et al.  Chromatic properties of neurons in macaque MT , 1994, Visual Neuroscience.

[39]  A. Watson,et al.  The optimal motion stimulus , 1995, Vision Research.

[40]  S. Shimojo,et al.  Modulation of motion aftereffect by surround motion and its dependence on stimulus size and eccentricity , 1995, Vision Research.

[41]  G. Orban,et al.  Spatial heterogeneity of inhibitory surrounds in the middle temporal visual area. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T D Albright,et al.  Visual motion perception. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[43]  G. Orban,et al.  Shape and Spatial Distribution of Receptive Fields and Antagonistic Motion Surrounds in the Middle Temporal Area (V5) of the Macaque , 1995, The European journal of neuroscience.

[44]  Victor A. F. Lamme The neurophysiology of figure-ground segregation in primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  G. Orban,et al.  Processing of kinetically defined boundaries in the cortical motion area MT of the macaque monkey. , 1995, Journal of neurophysiology.

[46]  M Stemmler,et al.  Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics. , 1995, Science.

[47]  R. Andersen,et al.  Integration of motion and stereopsis in middle temporal cortical area of macaques , 1995, Nature.

[48]  Preeti Verghese,et al.  Perceived visual speed constrained by image segmentation , 1996, Nature.

[49]  M. Rizzo,et al.  The relative efficacy of cues for two-dimensional shape perception , 1996, Vision Research.

[50]  Josée Rivest,et al.  Localizing contours defined by more than one attribute , 1996, Vision Research.

[51]  T. Albright,et al.  Contribution of area MT to perception of three-dimensional shape: a computational study , 1996, Vision Research.

[52]  A. Ahumada Perceptual Classification Images from Vernier Acuity Masked by Noise , 1996 .

[53]  G. Orban,et al.  The kinetic occipital region in human visual cortex. , 1997, Cerebral cortex.

[54]  G. Orban,et al.  Selectivity of Macaque MT/V5 Neurons for Surface Orientation in Depth Specified by Motion , 1997, The European journal of neuroscience.

[55]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[56]  G. Orban,et al.  The kinetic occipital (KO) region in man: an fMRI study. , 1997, Cerebral cortex.

[57]  J. B. Levitt,et al.  Contrast dependence of contextual effects in primate visual cortex , 1997, nature.

[58]  T. Schenk,et al.  Visual motion perception after brain damage: II. Deficits in form-from-motion perception , 1997, Neuropsychologia.

[59]  G. Orban,et al.  The spatial distribution of the antagonistic surround of MT/V5 neurons. , 1997, Cerebral cortex.

[60]  H. Wilson,et al.  Motion Integration over Space: Interaction of the Center and Surround Motion* * This research was first reported at the Annual Meeting of the Association for Research in Vision and Ophthalmology, May 1994 and 1995. , 1997, Vision Research.

[61]  T. Albright,et al.  Image Segmentation Enhances Discrimination of Motion in Visual Noise , 1997, Vision Research.

[62]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[63]  A. Leventhal,et al.  Neural correlates of boundary perception , 1998, Visual Neuroscience.

[64]  G. Shulman,et al.  Effect of motion contrast on human cortical responses to moving stimuli. , 1998, Journal of neurophysiology.

[65]  R. Wurtz,et al.  Response to motion in extrastriate area MSTl: center-surround interactions. , 1998, Journal of neurophysiology.

[66]  Victor A. F. Lamme,et al.  Feedforward, horizontal, and feedback processing in the visual cortex , 1998, Current Opinion in Neurobiology.

[67]  R. Andersen,et al.  Center–Surround Antagonism Based on Disparity in Primate Area MT , 1998, The Journal of Neuroscience.

[68]  Lin Liu,et al.  Modeling the Surround of MT Cells and Their Selectivity for Surface Orientation in Depth Specified by Motion , 1998, Neural Computation.

[69]  R. Andersen,et al.  Encoding of three-dimensional structure-from-motion by primate area MT neurons , 1998, Nature.

[70]  G. Orban,et al.  Influence of stimulus speed upon the antagonistic surrounds of area MT/V5 neurons , 1998, Neuroreport.

[71]  E. Todorov,et al.  A local circuit approach to understanding integration of long-range inputs in primary visual cortex. , 1998, Cerebral cortex.

[72]  J. M. Hupé,et al.  Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons , 1998, Nature.

[73]  G. Orban,et al.  Motion-responsive regions of the human brain , 1999, Experimental Brain Research.

[74]  M. Shiffrar,et al.  The Linkage of Visual Motion Signals , 1999 .

[75]  Margaret E. Sereno,et al.  2-D center-surround effects on 3-D structure-from-motion. , 1999, Journal of experimental psychology. Human perception and performance.

[76]  R. Shapley,et al.  Contrast's effect on spatial summation by macaque V1 neurons , 1999, Nature Neuroscience.

[77]  Thomas D Albright,et al.  Seeing the Big Picture Integration of Image Cues in the Primate Visual System , 1999, Neuron.

[78]  G Westheimer,et al.  Dynamics of spatial summation in primary visual cortex of alert monkeys. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[79]  K. Nakayama,et al.  Psychophysical isolation of a motion-processing deficit in schizophrenics and their relatives and its association with impaired smooth pursuit. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[80]  G. Orban,et al.  Response latency of macaque area MT/V5 neurons and its relationship to stimulus parameters. , 1999, Journal of neurophysiology.

[81]  C. Gilbert,et al.  Attention Modulates Contextual Influences in the Primary Visual Cortex of Alert Monkeys , 1999, Neuron.

[82]  R Blake,et al.  Visual form created solely from temporal structure. , 1999, Science.

[83]  John H. R. Maunsell,et al.  Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys , 1999, Visual Neuroscience.

[84]  G. DeAngelis,et al.  Organization of Disparity-Selective Neurons in Macaque Area MT , 1999, The Journal of Neuroscience.

[85]  Karl J. Friston,et al.  A direct quantitative relationship between the functional properties of human and macaque V5 , 2000, Nature Neuroscience.

[86]  A. Cowey,et al.  Blindness to form from motion despite intact static form perception and motion detection , 2000, Neuropsychologia.

[87]  W. D. Craft,et al.  Foundations of spatial vision: from retinal images to perceived shapes. , 2000, Psychological review.

[88]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[89]  G. Orban,et al.  Processing of kinetically defined boundaries in areas V1 and V2 of the macaque monkey. , 2000, Journal of neurophysiology.

[90]  G. Orban,et al.  Impairment in motion discrimination tasks is unrelated to amount of damage to superior temporal sulcus motion areas , 2000, The Journal of comparative neurology.

[91]  R. Born,et al.  Segregation of Object and Background Motion in Visual Area MT Effects of Microstimulation on Eye Movements , 2000, Neuron.

[92]  J. Gold,et al.  Representation of a perceptual decision in developing oculomotor commands , 2000, Nature.

[93]  R. Born Center-surround interactions in the middle temporal visual area of the owl monkey. , 2000, Journal of neurophysiology.

[94]  M. Sur,et al.  Dynamic properties of recurrent inhibition in primary visual cortex: contrast and orientation dependence of contextual effects. , 2000, Journal of neurophysiology.

[95]  Dave Regan,et al.  Human perception of objects: early visual processing of spatial form defined by luminance , 2000 .

[96]  R. Born,et al.  Specificity of Projections from Wide-Field and Local Motion-Processing Regions within the Middle Temporal Visual Area of the Owl Monkey , 2000, The Journal of Neuroscience.

[97]  Leslie G. Ungerleider,et al.  Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex. , 2001, Journal of neurophysiology.

[98]  Jean Lorenceau,et al.  Form constraints in motion binding , 2001, Nature Neuroscience.

[99]  C. Hung,et al.  Real and illusory contour processing in area V1 of the primate: a cortical balancing act. , 2001, Cerebral cortex.

[100]  D. Heeger,et al.  Neuronal Basis of the Motion Aftereffect Reconsidered , 2001, Neuron.

[101]  Margaret S Livingstone,et al.  Two-Dimensional Substructure of MT Receptive Fields , 2001, Neuron.

[102]  J. Lappin,et al.  Coherence of early motion signals , 2001, Vision Research.

[103]  Barton L. Anderson,et al.  Motion direction, speed and orientation in binocular matching , 2001, Nature.

[104]  S. Treue Neural correlates of attention in primate visual cortex , 2001, Trends in Neurosciences.

[105]  Marc M. Van Hulle,et al.  Function of center-surround antagonism for motion in visual area MT/V5: a modeling study , 2001, Vision Research.

[106]  H. Jones,et al.  Surround suppression in primate V1. , 2001, Journal of neurophysiology.

[107]  David J. Heeger,et al.  Spatiotemporal mechanisms for detecting and identifying image features in human vision , 2002, Nature Neuroscience.

[108]  Jérôme Casas,et al.  Visual systems: Predator and prey views of spider camouflage , 2002, Nature.

[109]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[110]  M. Shadlen,et al.  Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task , 2002, The Journal of Neuroscience.

[111]  A. Leventhal,et al.  GABA and Its Agonists Improved Visual Cortical Function in Senescent Monkeys , 2003, Science.

[112]  Richard J. A. van Wezel,et al.  The motion reverse correlation (MRC) method: A linear systems approach in the motion domain , 2003, Journal of Neuroscience Methods.

[113]  Randolph Blake,et al.  Perceptual consequences of centre–surround antagonism in visual motion processing , 2003, Nature.

[114]  S. Zeki,et al.  The processing of kinetic contours in the brain. , 2003, Cerebral cortex.

[115]  C. Chabris,et al.  Neural mechanisms of general fluid intelligence , 2003, Nature Neuroscience.

[116]  Stephen A. Baccus,et al.  Segregation of object and background motion in the retina , 2003, Nature.

[117]  J. Schall On building a bridge between brain and behavior. , 2004, Annual review of psychology.

[118]  K. D. Valois,et al.  Texture segregation by motion under low luminance levels , 2004, Vision Research.

[119]  P. Lennie,et al.  The Impact of Suppressive Surrounds on Chromatic Properties of Cortical Neurons , 2004, The Journal of Neuroscience.

[120]  R. Desimone,et al.  Local precision of visuotopic organization in the middle temporal area (MT) of the macaque , 2004, Experimental Brain Research.