Microwave beam broadening due to turbulent plasma density fluctuations within the limit of the Born approximation and beyond

Plasma turbulence, and edge density fluctuations in particular, can under certain conditions broaden the cross-section of injected microwave beams significantly. This can be a severe problem for applications relying on well-localized deposition of the microwave power, like the control of MHD instabilities. Here we investigate this broadening mechanism as a function of fluctuation level, background density and propagation length in a fusion-relevant scenario using two numerical codes, the full-wave code IPF-FDMC and the novel wave kinetic equation solver WKBeam. The latter treats the effects of fluctuations using a statistical approach, based on an iterative solution of the scattering problem (Born approximation). The full-wave simulations are used to benchmark this approach. The Born approximation is shown to be valid over a large parameter range, including ITER-relevant scenarios.

[1]  Manfred Thumm,et al.  MW gyrotron development for fusion plasma applications , 2003 .

[2]  E. Doyle,et al.  Comparison of turbulence measurements from DIII-D low-mode and high-performance plasmas to turbulence simulations and models , 2001 .

[3]  Yves Peysson,et al.  RF current drive and plasma fluctuations , 2011 .

[4]  A. R. Stokes,et al.  Principles of Optics: Scattering from inhomogeneous media , 1999 .

[5]  Ulrich Stroth,et al.  Full-wave calculation of the O–X–B mode conversion of Gaussian beams in a cylindrical plasma , 2008 .

[6]  Annett Baier,et al.  Electromagnetic Simulation Using The Fdtd Method , 2016 .

[7]  F. Ryter,et al.  Electron density evolution after L–H transitions and the L–H/H–L cycle in ASDEX Upgrade , 2012 .

[8]  A. Balakin,et al.  The influence of the edge density fluctuations on electron cyclotron wave beam propagation in tokamaks , 2010 .

[9]  E. Westerhof Requirements on heating or current drive for tearing mode stabilization by current profile tailoring , 1987 .

[10]  Kyriakos Hizanidis,et al.  Scattering of radio frequency waves by blobs in tokamak plasmasa) , 2013 .

[11]  C. Lechte,et al.  ρs scaling of characteristic turbulent structures in the torsatron TJ-K , 2005 .

[12]  P. Hennequin,et al.  Turbulence characteristics of the I-mode confinement regime in ASDEX Upgrade , 2017 .

[13]  Dennis M. Sullivan,et al.  Electromagnetic Simulation Using the FDTD Method , 2000 .

[14]  C. Lechte,et al.  Study of edge turbulence in dimensionally similar laboratory plasmas , 2004 .

[15]  M. R. O'Brien,et al.  Propagation in 3D of microwaves through density perturbations , 2013, 1311.7324.

[16]  G. Gantenbein,et al.  Control of MHD instabilities by ECCD: ASDEX Upgrade results and implications for ITER , 2007 .

[18]  R. Cano,et al.  Electron cyclotron emission and absorption in fusion plasmas , 1983 .

[19]  Mcdonald Wave kinetic equation in a fluctuating medium. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[20]  E. Ott,et al.  Theory of Electron Cyclotron Resonance Heating of Tokamak Plasmas. , 1979 .

[21]  H. Eixenberger,et al.  NTM stabilization by alternating O-point EC current drive using a high-power diplexer , 2016 .

[22]  Dennis M. Sullivan,et al.  Electromagnetic Simulation Using the FDTD Method: Sullivan/Electromagnetic Simulation Using the FDTD Method , 2013 .

[23]  M. Schmid Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .

[24]  E. Holzhauer,et al.  Influence of plasma turbulence on microwave propagation , 2016, 1604.00344.

[25]  Joseph P. Dougherty,et al.  Waves in plasmas. , 1993 .

[26]  Robert W. Boyd,et al.  Intuitive explanation of the phase anomaly of focused light beams , 1980 .

[27]  C. Lechte,et al.  Investigation of the Scattering Efficiency in Doppler Reflectometry by Two-Dimensional Full-Wave Simulations , 2009, IEEE Transactions on Plasma Science.

[28]  R. J. La Haye,et al.  Neoclassical tearing modes and their controla) , 2005 .

[29]  G. Saibene,et al.  Interaction of the electron density fluctuations with electron cyclotron waves from the equatorial launcher in ITER , 2017 .

[30]  Olivier Sauter,et al.  On the requirements to control neoclassical tearing modes in burning plasmas , 2010 .

[31]  H. Winful,et al.  Physical origin of the Gouy phase shift. , 2001, Optics letters.

[32]  R. Prater,et al.  Heating and current drive by electron cyclotron waves , 2003 .

[33]  E. Poli,et al.  Cross-polarization scattering of diffracting electron-cyclotron beams in a turbulent plasma with the WKBeam code , 2016 .

[34]  Ieee Microwave Theory,et al.  Quasioptical systems : Gaussian beam quasioptical propagation and applications , 1998 .

[35]  Timothy Goodman,et al.  On recent results in the modelling of neoclassical-tearing-mode stabilization via electron cyclotron current drive and their impact on the design of the upper EC launcher for ITER , 2015 .

[36]  Influence of density fluctuations on the O–X mode conversion and on microwave propagation , 2015 .

[37]  Ordinary wave propagation in a tokamak with random density fluctuations , 1988 .

[38]  A. Ram,et al.  Scattering of radio frequency waves by cylindrical density filaments in tokamak plasmas , 2016 .

[39]  V. Rohde,et al.  Generation of blobs and holes in the edge of the ASDEX Upgrade tokamak , 2010 .

[40]  G. Birkenmeier,et al.  Generation and heating of toroidally confined overdense plasmas with 2.45 GHz microwaves , 2010 .

[41]  Loukas Vlahos,et al.  Electron-cyclotron wave scattering by edge density fluctuations in ITER , 2009 .

[42]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[43]  L. Andrews,et al.  Laser Beam Propagation Through Random Media , 1998 .

[44]  G. V. Pereverzev,et al.  TORBEAM, a beam tracing code for electron-cyclotron waves in tokamak plasmas , 2001 .

[45]  G. D. Conway,et al.  Turbulence measurements in fusion plasmas , 2008 .

[46]  G. Saibene,et al.  The effect of density fluctuations on electron cyclotron beam broadening and implications for ITER , 2017 .

[47]  Steven W. McDonald,et al.  Phase-space representations of wave equations with applications to the eikonal approximation for short-wavelength waves , 1988 .

[48]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[49]  Bruno Després,et al.  Stable explicit coupling of the Yee scheme with a linear current model in fluctuating magnetized plasmas , 2015, J. Comput. Phys..

[50]  C. Fuchs,et al.  Integrated Data Analysis of Profile Diagnostics at ASDEX Upgrade , 2010 .

[51]  V. Igochine,et al.  Active Control of Magneto-hydrodynamic Instabilities in Hot Plasmas , 2015 .

[52]  T. H. Stix Waves in plasmas , 1992 .

[54]  Allen Taflove,et al.  Accuracy of the Born approximation in calculating the scattering coefficient of biological continuous random media. , 2009, Optics letters.

[55]  Omar Maj,et al.  Scattering of diffracting beams of electron cyclotron waves by random density fluctuations in inhomogeneous plasmas , 2015 .

[56]  J. Keller,et al.  Elastic, Electromagnetic, and Other Waves in a Random Medium , 1964 .

[57]  L. Colas,et al.  Simulation as a tool to improve wave heating in fusion plasmas , 2015, Journal of Plasma Physics.

[58]  S. Zweben,et al.  Edge turbulence measurements in toroidal fusion devices , 2007 .

[59]  S. Heuraux,et al.  Electron cyclotron resonance heating beam broadening in the edge turbulent plasma of fusion machines , 2015 .