Nilmanifolds are Jiang-type spaces for coincidences

[1]  P. Wong Coincidences of maps into homogeneous spaces , 1999 .

[2]  D. Gonçalves The coincidence Reidemeister classes of maps on nilmanifolds , 1998 .

[3]  D. Gonçalves Coincidence Reidemeister classes on nilmanifolds and nilpotent fibrations , 1998 .

[4]  C. McCord Lefschetz and Nielsen coincidence numbers on nilmanifolds and solvmanifolds, II , 1997 .

[5]  P. Wong,et al.  Reidemeister numbers of equivariant maps , 1995 .

[6]  D. Anosov BRIEF COMMUNICATIONS: The Nielsen numbers of maps of nil-manifolds , 1985 .

[7]  Robin B. S. Brooks,et al.  Certain Subgroups of the Fundamental Group and the Number of Roots of f(x) = a , 1973 .

[8]  RobertF Brown,et al.  A Lower Bound for the ?-Nielsen Number , 1969 .

[9]  D. Gonçalves,et al.  Homogeneous spaces in coincidence theory , 1997 .

[10]  J. Jezierski One codimensional Wecken type theorems , 1993 .

[11]  R. Geoghegan,et al.  One-parameter Fixed Point Theory , 1990 .

[12]  E. Fadell,et al.  On a Theorem of Anosov on Nielsen Numbers for Nilmanifolds , 1986 .

[13]  B. Jiang,et al.  Lectures on Nielsen fixed point theory , 1983 .

[14]  G. Whitehead,et al.  Elements of Homotopy Theory , 1978 .

[15]  P. Stebe Residual solvability of an equation in nilpotent groups , 1976 .

[16]  R. Brooks On the sharpness of the ∆2 and ∆1 Nielsen numbers. , 1973 .

[17]  RobertF Brown,et al.  The Lefschetz fixed point theorem , 1971 .

[18]  H. Schirmer Mindestzahlen von Koinzidenzpunkten. , 1955 .