Synchronization of Coupled Limit Cycles

A unified approach to the analysis of synchronization in coupled systems of autonomous differential equations is presented in this work. Through a careful analysis of the variational equation of the coupled system we establish a sufficient condition for synchronization in terms of the geometric properties of the local limit cycles and the coupling operator. This result applies to a large class of differential equation models in physics and biology. The stability analysis is complemented by a discussion of numerical simulations of a compartmental model of a neuron.

[1]  Nikolai F. Rulkov,et al.  Designing a Coupling That Guarantees Synchronization between Identical Chaotic Systems , 1997 .

[2]  J. Hale Diffusive coupling, dissipation, and synchronization , 1997 .

[3]  J. Cohen,et al.  The role of locus coeruleus in the regulation of cognitive performance. , 1999, Science.

[4]  Naomi Ehrich Leonard,et al.  Robustness of noisy consensus dynamics with directed communication , 2010, Proceedings of the 2010 American Control Conference.

[5]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[6]  Krevsimir Josi'c,et al.  Synchronization in networks of general, weakly nonlinear oscillators , 2004, nlin/0501015.

[7]  Francesco Bullo,et al.  Transient Stability Analysis in Power Networks and Synchronization of Non-uniform Kuramoto Oscillators , 2009 .

[8]  Georgi S. Medvedev,et al.  Multimodal regimes in a compartmental model of the dopamine neuron , 2004 .

[9]  G. Ermentrout,et al.  Multiple pulse interactions and averaging in systems of coupled neural oscillators , 1991 .

[10]  E. Mosekilde,et al.  Chaotic Synchronization: Applications to Living Systems , 2002 .

[11]  Carson C. Chow,et al.  Dynamics of Spiking Neurons with Electrical Coupling , 2000, Neural Computation.

[12]  Martin Hasler,et al.  Generalized connection graph method for synchronization in asymmetrical networks , 2006 .

[13]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[14]  Roy,et al.  Experimental synchronization of chaotic lasers. , 1994, Physical review letters.

[15]  R. Rand,et al.  Dynamics of two strongly coupled van der pol oscillators , 1982 .

[16]  J. Dostrovsky,et al.  High-frequency Synchronization of Neuronal Activity in the Subthalamic Nucleus of Parkinsonian Patients with Limb Tremor , 2000, The Journal of Neuroscience.

[17]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[18]  Francesco Bullo,et al.  Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators , 2010, ACC 2010.

[19]  Steven H. Strogatz,et al.  Sync: The Emerging Science of Spontaneous Order , 2003 .

[20]  M. Rabinovich,et al.  Stochastic synchronization of oscillation in dissipative systems , 1986 .

[21]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[22]  N. Rulkov,et al.  Synchronization of chaotic systems: Transverse stability of trajectories in invariant manifolds. , 1997, Chaos.

[23]  W. Singer Synchronization of cortical activity and its putative role in information processing and learning. , 1993, Annual review of physiology.

[24]  Georgi S. Medvedev,et al.  Synchronization of coupled stochastic limit cycle oscillators , 2009, 0911.5520.

[25]  Shui-Nee Chow,et al.  Synchronization in lattices of coupled oscillators , 1997 .

[26]  E. Izhikevich,et al.  Weakly connected neural networks , 1997 .

[27]  G. Parisi,et al.  Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study , 2007, Proceedings of the National Academy of Sciences.

[28]  M. Hasler,et al.  Connection Graph Stability Method for Synchronized Coupled Chaotic Systems , 2004 .

[29]  G. Ermentrout,et al.  Coupled oscillators and the design of central pattern generators , 1988 .

[30]  Chris Arney Sync: The Emerging Science of Spontaneous Order , 2007 .

[31]  Helen J. Cross,et al.  A Possible Role for Gap Junctions in Generation of Very Fast EEG Oscillations Preceding the Onset of, and Perhaps Initiating, Seizures , 2001, Epilepsia.

[32]  M. Golubitsky,et al.  Nonlinear dynamics of networks: the groupoid formalism , 2006 .

[33]  Marcus Pivato,et al.  Symmetry Groupoids and Patterns of Synchrony in Coupled Cell Networks , 2003, SIAM J. Appl. Dyn. Syst..

[34]  Stephen P. Boyd,et al.  Fast linear iterations for distributed averaging , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[35]  Meijun Ye,et al.  Electrical coupling: novel mechanism for sleep-wake control. , 2007, Sleep.

[36]  S. Strogatz,et al.  Frequency locking in Josephson arrays: Connection with the Kuramoto model , 1998 .

[37]  B. M. Fulk MATH , 1992 .

[38]  Fiona E. N. LeBeau,et al.  A Possible Role for Gap Junctions in Generation of Very Fast EEG Oscillations Preceding the Onset of, and Perhaps Initiating, Seizures , 2001 .

[39]  Wei Ren,et al.  Information consensus in multivehicle cooperative control , 2007, IEEE Control Systems.

[40]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[41]  Nancy Kopell,et al.  Synchronization and Transient Dynamics in the Chains of Electrically Coupled Fitzhugh--Nagumo Oscillators , 2001, SIAM J. Appl. Math..

[42]  Georgi S. Medvedev,et al.  Stochastic Stability of Continuous Time Consensus Protocols , 2010, SIAM J. Control. Optim..

[43]  Max Donath,et al.  American Control Conference , 1993 .

[44]  D. Sumpter,et al.  Consensus Decision Making by Fish , 2008, Current Biology.

[45]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[46]  John K. Tomfohr,et al.  Lecture Notes on Physics , 1879, Nature.

[47]  Stephen P. Boyd,et al.  The Fastest Mixing Markov Process on a Graph and a Connection to a Maximum Variance Unfolding Problem , 2006, SIAM Rev..

[48]  Kre simir Josi,et al.  Synchronization of Chaotic Systems and Invariant Manifolds , 2007 .

[49]  Eric Shea-Brown,et al.  On the Phase Reduction and Response Dynamics of Neural Oscillator Populations , 2004, Neural Computation.

[50]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[51]  D. Harville Matrix Algebra From a Statistician's Perspective , 1998 .

[52]  P. Holmes,et al.  On linearly coupled relaxation oscillations , 1984 .

[53]  R. Rand,et al.  Dynamics of two strongly coupled relaxation oscillators , 1986 .

[54]  I. Gel'fand,et al.  Lectures on Linear Algebra , 1961 .

[55]  Ilʹi︠a︡ Izrailevich Blekhman,et al.  Synchronization in science and technology , 1988 .

[56]  Georgi S. Medvedev,et al.  Electrical Coupling Promotes Fidelity of Responses in the Networks of Model Neurons , 2009, Neural Computation.

[57]  John Rinzel,et al.  Dynamics of Spiking Neurons Connected by Both Inhibitory and Electrical Coupling , 2003, Journal of Computational Neuroscience.

[58]  Georgi S. Medvedev,et al.  Convergence and stochastic stability of continuous time consensus protocols , 2010 .

[59]  Florian Dörfler,et al.  Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators , 2009, Proceedings of the 2010 American Control Conference.

[60]  I. Tyukin,et al.  Semi-passivity and synchronization of diffusively coupled neuronal oscillators , 2009, 0903.3535.

[61]  Ilya V. Kolmanovsky,et al.  Predictive energy management of a power-split hybrid electric vehicle , 2009, 2009 American Control Conference.

[62]  Stephen P. Boyd,et al.  Minimizing Effective Resistance of a Graph , 2008, SIAM Rev..

[63]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[64]  Stephen Coombes,et al.  Neuronal Networks with Gap Junctions: A Study of Piecewise Linear Planar Neuron Models , 2008, SIAM J. Appl. Dyn. Syst..

[65]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[66]  Philip Holmes,et al.  On the dynamics of electrically-coupled neurons with inhibitory synapses , 2007, Journal of Computational Neuroscience.