Capturing Spatially Varying Anisotropic Reflectance Parameters using Fourier Analysis

Reflectance parameters condition the appearance of objects in photorealistic rendering. Practical acquisition of reflectance parameters is still a difficult problem. Even more so for spatially varying or anisotropic materials, which increase the number of samples required. In this paper, we present an algorithm for acquisition of spatially varying anisotropic materials, sampling only a small number of directions. Our algorithm uses Fourier analysis to extract the material parameters from a sub-sampled signal. We are able to extract diffuse and specular reflectance, direction of anisotropy, surface normal and reflectance parameters from as little as 20 sample directions. Our system makes no assumption about the stationarity or regularity of the materials, and can recover anisotropic effects at the pixel level.

[1]  Pieter Peers,et al.  genBRDF: discovering new analytic BRDFs with genetic programming , 2014, ACM Trans. Graph..

[2]  Georgios D. Evangelidis,et al.  Parametric Image Alignment Using Enhanced Correlation Coefficient Maximization , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[4]  Frédo Durand,et al.  Experimental analysis of BRDF models , 2005, EGSR '05.

[5]  Jirí Filip,et al.  Effective Acquisition of Dense Anisotropic BRDF , 2014, 2014 22nd International Conference on Pattern Recognition.

[6]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..

[7]  Steve Marschner,et al.  Microfacet Models for Refraction through Rough Surfaces , 2007, Rendering Techniques.

[8]  B. Smith,et al.  Geometrical shadowing of a random rough surface , 1967 .

[9]  Paul Graham,et al.  Acquiring reflectance and shape from continuous spherical harmonic illumination , 2013, ACM Trans. Graph..

[10]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[11]  Szymon Rusinkiewicz,et al.  A New Change of Variables for Efficient BRDF Representation , 1998, Rendering Techniques.

[12]  Baining Guo,et al.  Pocket reflectometry , 2011, SIGGRAPH 2011.

[13]  Jaakko Lehtinen,et al.  Two-shot SVBRDF capture for stationary materials , 2015, ACM Trans. Graph..

[14]  John M. Snyder,et al.  Modeling anisotropic surface reflectance with example-based microfacet synthesis , 2008, SIGGRAPH 2008.

[15]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[16]  Jason Lawrence,et al.  A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance , 2010, ACM Transactions on Graphics.

[17]  John M. Snyder,et al.  Manifold bootstrapping for SVBRDF capture , 2010, ACM Trans. Graph..

[18]  Andrew Gardner,et al.  Linear light source reflectometry , 2003, ACM Trans. Graph..

[19]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[20]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[21]  Georgios D. Evangelidis,et al.  Projective Image Alignment by Using ECC Maximization , 2008, VISAPP.