Atomic layer deposition of dielectric overlayers for enhancing the optical properties and chemical stability of plasmonic nanoholes.

Fabricating plasmonic nanostructures with robust optical and chemical properties remains a challenging task, especially with silver, which has superior optical properties but poor environmental stability. In this work, conformal atomic layer deposition (ALD) of thin alumina overlayers is used to precisely tune the optical transmission properties of periodic nanohole arrays made in gold and silver films. Experiments and computer simulations confirm that ALD overlayers with optimized thicknesses tune and enhance the transmitted intensity due to refractive index matching effects and by modifying the dielectric properties of each nanohole. Furthermore, encapsulating silver nanohole arrays with thin alumina overlayers protects the patterned surfaces against unwanted oxidation and contamination. The ability to precisely tune the optical properties while simultaneously providing robust chemical stability can benefit a broad range of applications, including biosensing and fluorescence imaging.

[1]  T. Chinowsky,et al.  Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films , 1998 .

[2]  K. Kavanagh,et al.  Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[3]  T. Ebbesen,et al.  Optical transmission in perforated noble and transition metal films , 2006 .

[4]  Sang‐Hyun Oh,et al.  Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation. , 2009, Lab on a chip.

[5]  James V. Coe,et al.  Use of the Extraordinary Infrared Transmission of Metallic Subwavelength Arrays To Study the Catalyzed Reaction of Methanol to Formaldehyde on Copper Oxide , 2004 .

[6]  A. Rezania,et al.  Bioactivation of Metal Oxide Surfaces. 1. Surface Characterization and Cell Response , 1999 .

[7]  Chi-Sun Hwang,et al.  Ultrathin Film Encapsulation of an OLED by ALD , 2005 .

[8]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[9]  W. A. Murray,et al.  Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. , 2004, Physical review letters.

[10]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[11]  Jeffrey W. Elam,et al.  Low-Temperature Al 2 O 3 Atomic Layer Deposition , 2004 .

[12]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[13]  Hyungsoon Im,et al.  Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing. , 2009, Analytical chemistry.

[14]  J. Hogle,et al.  Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes. , 2008, Nano letters.

[15]  J. V. Coe,et al.  Extraordinary transmission of metal films with arrays of subwavelength holes. , 2008, Annual review of physical chemistry.

[16]  Paul Yager,et al.  Optical and electronic design for a high-performance surface plasmon resonance imager , 2004, SPIE Optics East.

[17]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[18]  J. Rogers,et al.  Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals , 2006, Proceedings of the National Academy of Sciences.

[19]  C. Haynes,et al.  Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy , 2005 .

[20]  Teri W Odom,et al.  Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. , 2006, Nano letters.

[21]  Steven M. George,et al.  Surface Chemistry for Atomic Layer Growth , 1996 .

[22]  Teri W. Odom,et al.  Screening plasmonic materials using pyramidal gratings , 2008, Proceedings of the National Academy of Sciences.

[23]  J. Rogers,et al.  Multispectral thin film biosensing and quantitative imaging using 3D plasmonic crystals. , 2009, Analytical chemistry.

[24]  J. P. Woerdman,et al.  Fano-type interpretation of red shifts and red tails in hole array transmission spectra , 2003, physics/0401054.

[25]  George C Schatz,et al.  Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. , 2005, The journal of physical chemistry. B.

[26]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[27]  P. Stark,et al.  Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology. , 2005, Methods.

[28]  Sang-Hyun Oh,et al.  Self-assembled plasmonic nanohole arrays. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[29]  K. Kavanagh,et al.  A new generation of sensors based on extraordinary optical transmission. , 2008, Accounts of chemical research.

[30]  A. Polman,et al.  Plasmonics Applied , 2008, Science.

[31]  M. Pelton,et al.  Recombination rates for single colloidal quantum dots near a smooth metal film. , 2009, Physical chemistry chemical physics : PCCP.

[32]  Yeshaiahu Fainman,et al.  Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor , 2007 .

[33]  Y. Fainman,et al.  High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. , 2006, Optics letters.

[34]  S. George,et al.  Low-Temperature Al2O3 Atomic Layer Deposition , 2004 .

[35]  Teri W Odom,et al.  Multiscale patterning of plasmonic metamaterials. , 2007, Nature nanotechnology.

[36]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[37]  Sang-Hyun Oh,et al.  Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells , 2008, LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[38]  G. Schatz,et al.  Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles , 2008 .

[39]  Steven M. George,et al.  Gas diffusion barriers on polymers using Al2O3 atomic layer deposition , 2006 .

[40]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[41]  J. Pendry,et al.  Evanescently coupled resonance in surface plasmon enhanced transmission , 2001 .

[42]  David Sinton,et al.  Attomolar protein detection using in-hole surface plasmon resonance. , 2009, Journal of the American Chemical Society.

[43]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[44]  Jing Zhao,et al.  Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. , 2006, Journal of the American Chemical Society.

[45]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[46]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[47]  M Mansuripur,et al.  Plasmonic nano-structures for optical data storage , 2009, Optical Data Storage.