Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry

One of the challenges in geometry processing is to automatically reconstruct a higher-level representation from raw geometric data. For instance, computing a parameterization of an object helps attaching information to it and converting between various representations. More generally, this family of problems may be thought of in terms of constructing structured function bases attached to surfaces. In this paper, we study a specific type of hierarchical function bases, defined by the eigenfunctions of the Laplace-Beltrami operator. When applied to a sphere, this function basis corresponds to the classical spherical harmonics. On more general objects, this defines a function basis well adapted to the geometry and the topology of the object. Based on physical analogies (vibration modes), we first give an intuitive view before explaining the underlying theory. We then explain in practice how to compute an approximation of the eigenfunctions of a differential operator, and show possible applications in geometry processing

[1]  Guoliang Xu,et al.  Convergent discrete Laplace-Beltrami operators over triangular surfaces , 2004, Geometric Modeling and Processing, 2004. Proceedings.

[2]  Bruno Lévy,et al.  Master-element vector irradiance for large tessellated models , 2005, GRAPHITE.

[3]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[4]  Kun Zhou,et al.  Iso-charts: stretch-driven mesh parameterization using spectral analysis , 2004, SGP '04.

[5]  Hujun Bao,et al.  3D surface filtering using spherical harmonics , 2004, Comput. Aided Des..

[6]  Y. D. Verdière On a novel graph invariant and a planarity criterion , 1990 .

[7]  Shing-Tung Yau,et al.  Global Conformal Parameterization , 2003, Symposium on Geometry Processing.

[8]  Yves Colin de Verdière,et al.  Sur un nouvel invariant des graphes et un critère de planarité , 1990, J. Comb. Theory, Ser. B.

[9]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[10]  M. Kac Can One Hear the Shape of a Drum , 1966 .

[11]  Craig Gotsman,et al.  On graph partitioning, spectral analysis, and digital mesh processing , 2003, 2003 Shape Modeling International..

[12]  M. Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .

[13]  Martin Isenburg,et al.  Streaming meshes , 2005, VIS 05. IEEE Visualization, 2005..

[14]  Valerio Pascucci,et al.  Quadrangulating a Mesh using Laplacian Eigenvectors , 2005 .

[15]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[16]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[17]  B. Cipra You Can't Hear the Shape of a Drum. , 1992, Science.

[18]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[19]  Ron Kimmel,et al.  Texture Mapping Using Surface Flattening via Multidimensional Scaling , 2002, IEEE Trans. Vis. Comput. Graph..

[20]  James Arvo The Role of Functional Analysis in Global Illumination , 1995, Rendering Techniques.

[21]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[22]  Mathieu Desbrun Applied Geometry:Discrete Differential Calculus for Graphics , 2004, Comput. Graph. Forum.

[23]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[24]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[25]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[26]  Frédo Durand,et al.  A frequency analysis of light transport , 2005, SIGGRAPH '05.

[27]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[28]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[29]  J. Friedman,et al.  Computing Betti Numbers via Combinatorial Laplacians , 1996, STOC '96.

[30]  Dmitry Jakobson,et al.  Geometric properties of eigenfunctions , 2001 .

[31]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[32]  Yehuda Koren,et al.  On Spectral Graph Drawing , 2003, COCOON.

[33]  Dirk Werner,et al.  What's Happening in the Mathematical Sciences? , 2001 .