A chemo-mechanical model of lithiation in silicon

[1]  Ji‐Guang Zhang,et al.  Bending-induced symmetry breaking of lithiation in germanium nanowires. , 2014, Nano letters.

[2]  A. V. van Duin,et al.  Mechanical properties of amorphous LixSi alloys: a reactive force field study , 2013 .

[3]  Ting Zhu,et al.  Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries , 2013 .

[4]  Min Zhou,et al.  Coupled mechano-diffusional driving forces for fracture in electrode materials , 2013 .

[5]  Sulin Zhang,et al.  Self-weakening in lithiated graphene electrodes , 2013 .

[6]  Yang Liu,et al.  Tough germanium nanoparticles under electrochemical cycling. , 2013, ACS nano.

[7]  Hongwei Liao,et al.  A beaded-string silicon anode. , 2013, ACS nano.

[8]  S. K. Srivastava,et al.  MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries. , 2013, Chemical communications.

[9]  Feng Gao,et al.  Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries , 2013 .

[10]  Yi Cui,et al.  In situ TEM of two-phase lithiation of amorphous silicon nanospheres. , 2013, Nano letters.

[11]  Yang Liu,et al.  Two-phase electrochemical lithiation in amorphous silicon. , 2013, Nano letters.

[12]  Jian Yu Huang,et al.  Self-limiting lithiation in silicon nanowires. , 2012, ACS nano.

[13]  Yi Cui,et al.  Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy , 2012, Advanced materials.

[14]  S. T. Picraux,et al.  In situ atomic-scale imaging of electrochemical lithiation in silicon. , 2012, Nature nanotechnology.

[15]  Yifan Gao,et al.  Strong dependency of lithium diffusion on mechanical constraints in high-capacity Li-ion battery electrodes , 2012, Acta Mechanica Sinica.

[16]  Z. Suo,et al.  Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries. , 2012, Nano letters.

[17]  J. Tour,et al.  In situ transmission electron microscopy of electrochemical lithiation, delithiation and deformation of individual graphene nanoribbons , 2012 .

[18]  Allan F. Bower,et al.  A simple finite element model of diffusion, finite deformation, plasticity and fracture in lithium ion insertion electrode materials , 2012 .

[19]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[20]  Jian Yu Huang,et al.  Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. , 2012, Nano letters.

[21]  Yi Cui,et al.  Fracture of crystalline silicon nanopillars during electrochemical lithium insertion , 2012, Proceedings of the National Academy of Sciences.

[22]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[23]  Vivek B. Shenoy,et al.  Pressure-Gradient Dependent Diffusion and Crack Propagation in Lithiated Silicon Nanowires , 2012 .

[24]  E. Kaxiras,et al.  Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries , 2012 .

[25]  Jian Yu Huang,et al.  In situ TEM electrochemistry of anode materials in lithium ion batteries , 2011 .

[26]  Yi Cui,et al.  Size-dependent fracture of Si nanowire battery anodes , 2011 .

[27]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[28]  S. T. Picraux,et al.  Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. , 2011, Nano letters.

[29]  Xiaofeng Qian,et al.  Lithiation-induced embrittlement of multiwalled carbon nanotubes. , 2011, ACS nano.

[30]  V Srinivasan,et al.  Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. , 2011, Physical review letters.

[31]  Brandon R. Long,et al.  Strain Anisotropies and Self‐Limiting Capacities in Single‐Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium‐Ion Battery Anodes , 2011 .

[32]  Yang Liu,et al.  Anisotropic swelling and fracture of silicon nanowires during lithiation. , 2011, Nano letters.

[33]  D. Aurbach,et al.  A review of advanced and practical lithium battery materials , 2011 .

[34]  Zhigang Suo,et al.  Lithium-assisted Plastic Deformation of Silicon Electrodes in Lithium-ion Batteries: a First-principles Theoretical Study , 2022 .

[35]  Yi Cui,et al.  Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. , 2011, Nano letters.

[36]  Yi Cui,et al.  Anomalous shape changes of silicon nanopillars by electrochemical lithiation. , 2011, Nano letters.

[37]  John P. Sullivan,et al.  Ultrafast electrochemical lithiation of individual Si nanowire anodes. , 2011, Nano letters.

[38]  Ting Zhu,et al.  Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating. , 2011, ACS nano.

[39]  T. Ohzuku,et al.  Silicon-Based Negative Electrode for High-Capacity Lithium-Ion Batteries: “SiO”-Carbon Composite , 2011 .

[40]  Zhigang Suo,et al.  Inelastic hosts as electrodes for high-capacity lithium-ion batteries , 2011 .

[41]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[42]  A. Bower,et al.  In Situ Measurements of Stress-Potential Coupling in Lithiated Silicon , 2010, 1108.0372.

[43]  Enge Wang,et al.  Lithium insertion in silicon nanowires: an ab initio study. , 2010, Nano letters.

[44]  Venkat Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[45]  Yue Qi,et al.  Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: A first-principles study , 2010 .

[46]  G. Yushin,et al.  Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. , 2010, Journal of the American Chemical Society.

[47]  Jin-Hwan Park,et al.  Electrochemical lithiation and delithiation of LiMnPO4: Effect of cation substitution , 2010 .

[48]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[49]  Huajian Gao,et al.  A surface locking instability for atomic intercalation into a solid electrode , 2010 .

[50]  A. Bower Applied Mechanics of Solids , 2009 .

[51]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[52]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[53]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[54]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[55]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[56]  Robert E. Newnham,et al.  Properties of Materials: Anisotropy, Symmetry, Structure , 2005 .

[57]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[58]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[59]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[60]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[61]  R J Lanzafame,et al.  "Getting there". , 1998, Journal of clinical laser medicine & surgery.

[62]  J. Wortman,et al.  Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium , 1965 .