Versatile Electronic Devices Based on WSe2/SnSe2 Vertical van der Waals Heterostructure.

Van der Waals heterostructures formed by stacking of various two-dimensional materials are promising in electronic applications. However, the performances of most reported electronic devices based on van der Waals heterostructures are far away from existing (Si, Ge and III-V bulk material based) technologies'. Here we report high performance heterostructure devices based on vertically stacked tungsten diselenide and tin diselenide. Due to the unique band alignment and the atomic thickness of the material, both charge carrier transport and energy barrier can be effectively modulated by the applied electrical field. As a result, the heterostructure devices show superb characteristics, with a high current on/off ratio of ~3 x 108, an average subthreshold slope of 126 mV/decade over five decades of current change due to band to band tunneling, an ultra-high rectification ratio of ~3 x 108 and a current density of more than 104 A/cm2. Further, a small signal half wave rectifier circuit based on majority carrier transport dominated diode is successfully demonstrated, showing great potential in future high speed electronic applications.

[1]  H. Zandvliet,et al.  Universal Fermi-Level Pinning in Transition-Metal Dichalcogenides , 2019, The journal of physical chemistry. C, Nanomaterials and interfaces.

[2]  Zhenxing Wang,et al.  High-performance, multifunctional devices based on asymmetric van der Waals heterostructures , 2018, Nature Electronics.

[3]  Chunsen Liu,et al.  A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications , 2018, Nature Nanotechnology.

[4]  G. Fiori,et al.  Reconfigurable Diodes Based on Vertical WSe2 Transistors with van der Waals Bonded Contacts , 2018, Advanced materials.

[5]  Ji Hoon Park,et al.  Vertical and In-Plane Current Devices Using NbS2/n-MoS2 van der Waals Schottky Junction and Graphene Contact. , 2018, Nano letters (Print).

[6]  Krishna Murali,et al.  Gate-Tunable WSe2/SnSe2 Backward Diode with Ultrahigh-Reverse Rectification Ratio. , 2018, ACS applied materials & interfaces.

[7]  Yanqing Wu,et al.  Multifunctional high-performance van der Waals heterostructures. , 2017, Nature nanotechnology.

[8]  S. K. Sinha,et al.  Temperature analysis of Ge/Si heterojunction SOI-Tunnel FET , 2017 .

[9]  J. Hone,et al.  Modulation of Quantum Tunneling via a Vertical Two-Dimensional Black Phosphorus and Molybdenum Disulfide p-n Junction. , 2017, ACS nano.

[10]  David-Wei Zhang,et al.  Tunable SnSe2 /WSe2 Heterostructure Tunneling Field Effect Transistor. , 2017, Small.

[11]  D. Bunandar,et al.  A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. , 2017, Nature nanotechnology.

[12]  Faisal Ahmed,et al.  Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. , 2017, ACS nano.

[13]  Kai Xu,et al.  Sub-10 nm Nanopattern Architecture for 2D Material Field-Effect Transistors. , 2017, Nano letters.

[14]  Seongjun Park,et al.  Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio , 2016, Nature Communications.

[15]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[16]  Ming-Yang Li,et al.  Heterostructures based on two-dimensional layered materials and their potential applications , 2016 .

[17]  Y. Chai,et al.  Carrier Type Control of WSe2 Field‐Effect Transistors by Thickness Modulation and MoO3 Layer Doping , 2016 .

[18]  Bjarke S. Jessen,et al.  The hot pick-up technique for batch assembly of van der Waals heterostructures , 2016, Nature communications.

[19]  E. Hwang,et al.  Probing Out-of-Plane Charge Transport in Black Phosphorus with Graphene-Contacted Vertical Field-Effect Transistors. , 2016, Nano letters.

[20]  C. Hu,et al.  2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures , 2016 .

[21]  Meiyun Zhang,et al.  Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown , 2016 .

[22]  T. Palacios,et al.  High-Performance WSe2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits. , 2015, Nano letters.

[23]  Kenji Watanabe,et al.  Supplemental note : Layer-by-Layer Dielectric Breakdown of Hexagonal Boron Nitride , 2015 .

[24]  Jing Guo,et al.  Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. , 2015, ACS nano.

[25]  A Gholinia,et al.  Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.

[26]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[27]  Eli Yablonovitch,et al.  Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.

[28]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[29]  Min Sup Choi,et al.  Metal-Semiconductor Barrier Modulation for High Photoresponse in Transition Metal Dichalcogenide Field Effect Transistors , 2014, Scientific Reports.

[30]  Stephen McDonnell,et al.  Defect-dominated doping and contact resistance in MoS2. , 2014, ACS nano.

[31]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[32]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[33]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[34]  Wei Liu,et al.  Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. , 2013, Nano letters.

[35]  G. Eda,et al.  Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. , 2013, Nanoscale.

[36]  Young-Jun Yu,et al.  Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices , 2013, Nature Communications.

[37]  A. Kis,et al.  Nonvolatile memory cells based on MoS2/graphene heterostructures. , 2013, ACS nano.

[38]  Yu Huang,et al.  Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters , 2012, Nature materials.

[39]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[40]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[41]  X. Jia,et al.  Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. , 2012, ACS nano.

[42]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[43]  H. Ota,et al.  Experimental demonstration of temperature stability of Si-tunnel FET over Si-MOSFET , 2012, 2012 IEEE Silicon Nanoelectronics Workshop (SNW).

[44]  J. Brivio,et al.  Ripples and layers in ultrathin MoS2 membranes. , 2011, Nano letters.

[45]  E. Rodriguez-Villegas,et al.  A Low Power Low Voltage Rectifier Circuit , 2006, 2006 49th IEEE International Midwest Symposium on Circuits and Systems.

[46]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[47]  Wolfram Jaegermann,et al.  Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule , 1999 .

[48]  T.Y. Chan,et al.  The impact of gate-induced drain leakage current on MOSFET scaling , 1987, 1987 International Electron Devices Meeting.