The electrical and structural properties of n-type InAs nanowires grown from metal–organic precursors

The electrical and structural properties of 111B-oriented InAs nanowires grown using metal-organic precursors have been studied. On the basis of electrical measurements it was found that the trends in carbon incorporation are similar to those observed in the layer growth, where an increased As/In precursor ratio and growth temperature result in a decrease in carbon-related impurities. Our results also show that the effect of non-intentional carbon doping is weaker in InAs nanowires compared to bulk, which may be explained by lower carbon incorporation in the nanowire core. We determine that differences in crystal quality, here quantified as the stacking fault density, are not the primary cause for variations in resistivity of the material studied. The effects of some n-dopant precursors (S, Se, Si, Sn) on InAs nanowire morphology, crystal structure and resistivity were also investigated. All precursors result in n-doped nanowires, but high precursor flows of Si and Sn also lead to enhanced radial overgrowth. Use of the Se precursor increases the stacking fault density in wurtzite nanowires, ultimately at high flows leading to a zinc blende crystal structure with strong overgrowth and very low resistivity.

[1]  L. Lauhon,et al.  Three-dimensional nanoscale composition mapping of semiconductor nanowires. , 2006, Nano letters.

[2]  J. Ott,et al.  Doping of germanium nanowires grown in presence of PH3 , 2006 .

[3]  K. Dick,et al.  Optimization of Au-assisted InAs nanowires grown by MOVPE , 2006 .

[4]  L.-E. Wernersson,et al.  Vertical Enhancement-Mode InAs Nanowire Field-Effect Transistor With 50-nm Wrap Gate , 2008, IEEE Electron Device Letters.

[5]  Lars Samuelson,et al.  Au-free epitaxial growth of InAs nanowires. , 2006, Nano letters.

[6]  H. Lüth,et al.  Mombe of InAs on GaAs , 1990 .

[7]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[8]  M. Scheffler,et al.  Diameter-dependent conductance of InAs nanowires , 2009, 0912.4509.

[9]  O. Wunnicke,et al.  Gate capacitance of back-gated nanowire field-effect transistors , 2006 .

[10]  Peter W Voorhees,et al.  Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire. , 2009, Nature nanotechnology.

[11]  Darija Susac,et al.  Structural and Room‐Temperature Transport Properties of Zinc Blende and Wurtzite InAs Nanowires , 2009 .

[12]  Christophe Delerue,et al.  Ionization energy of donor and acceptor impurities in semiconductor nanowires: Importance of dielectric confinement , 2007 .

[13]  Lars-Erik Wernersson,et al.  InAs nanowire metal-oxide-semiconductor capacitors , 2008 .

[14]  K. Dick,et al.  Controlled polytypic and twin-plane superlattices in iii-v nanowires. , 2009, Nature nanotechnology.

[15]  Tobias Hanrath,et al.  Chemical surface passivation of Ge nanowires. , 2004, Journal of the American Chemical Society.

[16]  Jinlin Huang,et al.  Diameter-dependent dopant location in silicon and germanium nanowires , 2009, Proceedings of the National Academy of Sciences.

[17]  T. Kuech,et al.  Carbon doping in metalorganic vapor phase epitaxy , 1994 .

[18]  Walter Riess,et al.  Donor deactivation in silicon nanostructures. , 2009, Nature nanotechnology.

[19]  J. Hrbek,et al.  Chemistry of sulfur-containing molecules on Au(111): thiophene, sulfur dioxide, and methanethiol adsorption , 2002 .

[20]  Walter Riess,et al.  Nanowire-based one-dimensional electronics , 2006 .

[21]  Xiaocheng Jiang,et al.  InAs/InP radial nanowire heterostructures as high electron mobility devices. , 2007, Nano letters.

[22]  Lars Samuelson,et al.  Gold Nanoparticles: Production, Reshaping, and Thermal Charging , 1999 .

[23]  Nakayama,et al.  Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. , 1994, Physical review. B, Condensed matter.

[24]  E. Lind,et al.  Development of a Vertical Wrap-Gated InAs FET , 2008, IEEE Transactions on Electron Devices.

[25]  Electrical and optical properties of carbon implanted In2O3 thin film , 2000 .

[26]  Lars Samuelson,et al.  Epitaxial Growth of Indium Arsenide Nanowires on Silicon Using Nucleation Templates Formed by Self‐Assembled Organic Coatings , 2007 .

[27]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[28]  G. B. Stringfellow,et al.  Effect of growth temperature on photoluminescence of InAs grown by organometallic vapor phase epitaxy , 1991 .

[29]  Lars Samuelson,et al.  Electron transport in InAs nanowires and heterostructure nanowire devices , 2004 .

[30]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[31]  L. Samuelson,et al.  Monolithic GaAs/InGaP nanowire light emitting diodes on silicon , 2008, Nanotechnology.