On the fractal structure of the rescaled evolution set of Carlitz sequences of polynomials
暂无分享,去创建一个
Heinz-Otto Peitgen | Guentcho Skordev | Fritz von Haeseler | H. Peitgen | F. V. Haeseler | G. Skordev
[1] Heinz-Otto Peitgen,et al. Pascal's triangle, dynamical systems and attractors , 1992, Ergodic Theory and Dynamical Systems.
[2] J.-P. Allouche,et al. Automata and automatic sequences , 2022, ArXiv.
[3] Heinz-Otto Peitgen,et al. Fractal Patterns in Gaussian and Stirling Number Tables , 1998, Ars Comb..
[4] G. A. Edgar. Measure, Topology, and Fractal Geometry , 1990 .
[5] K. Falconer. The geometry of fractal sets , 1985 .
[6] J.-P. Allouche,et al. Linear Cellular Automata, Finite Automata and Pascal's Triangle , 1996, Discret. Appl. Math..
[7] R. A. Silverman,et al. Special functions and their applications , 1966 .
[8] Christoph Bandt,et al. Self‐Similar Sets. I. Topological MARKOV Chains and Mixed Self‐Similar Sets , 1989 .
[9] J. H. Wahab. New cases of irreducibility for Legendre polynomials. II , 1952 .
[10] Stephen J. Willson,et al. Cellular automata can generate fractals , 1984, Discret. Appl. Math..
[11] Richard J. McIntosh. A generalization of a congruential property of Lucas , 1992 .
[12] Leonard Carlitz. The coefficients of the reciprocal ofJo(x) , 1955 .
[13] Jean-Paul Allouche,et al. Schur congruences, Carlitz sequences of polynomials and automaticity , 2000, Discret. Math..
[14] Satoshi Takahashi,et al. Self-Similarity of Linear Cellular Automata , 1992, J. Comput. Syst. Sci..
[15] R. Daniel Mauldin,et al. Hausdorff dimension in graph directed constructions , 1988 .
[16] Stephen J. Willson,et al. Calculating growth rates and moments for additive cellular automata , 1991, Discret. Appl. Math..
[17] Heinz-Otto Peitgen,et al. Global analysis of self-similarity features of cellular automata: selected examples , 1995 .