On the fractal structure of the rescaled evolution set of Carlitz sequences of polynomials

Abstract Self-similarity properties of the coefficient patterns of the so-called m -Carlitz sequences of polynomials are considered. These properties are coded in an associated fractal set – the rescaled evolution set. We extend previous results on linear cellular automata with states in a finite field. Applications are given for the sequence of Legendre polynomials and sequences associated with the zero Bessel function.

[1]  Heinz-Otto Peitgen,et al.  Pascal's triangle, dynamical systems and attractors , 1992, Ergodic Theory and Dynamical Systems.

[2]  J.-P. Allouche,et al.  Automata and automatic sequences , 2022, ArXiv.

[3]  Heinz-Otto Peitgen,et al.  Fractal Patterns in Gaussian and Stirling Number Tables , 1998, Ars Comb..

[4]  G. A. Edgar Measure, Topology, and Fractal Geometry , 1990 .

[5]  K. Falconer The geometry of fractal sets , 1985 .

[6]  J.-P. Allouche,et al.  Linear Cellular Automata, Finite Automata and Pascal's Triangle , 1996, Discret. Appl. Math..

[7]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[8]  Christoph Bandt,et al.  Self‐Similar Sets. I. Topological MARKOV Chains and Mixed Self‐Similar Sets , 1989 .

[9]  J. H. Wahab New cases of irreducibility for Legendre polynomials. II , 1952 .

[10]  Stephen J. Willson,et al.  Cellular automata can generate fractals , 1984, Discret. Appl. Math..

[11]  Richard J. McIntosh A generalization of a congruential property of Lucas , 1992 .

[12]  Leonard Carlitz The coefficients of the reciprocal ofJo(x) , 1955 .

[13]  Jean-Paul Allouche,et al.  Schur congruences, Carlitz sequences of polynomials and automaticity , 2000, Discret. Math..

[14]  Satoshi Takahashi,et al.  Self-Similarity of Linear Cellular Automata , 1992, J. Comput. Syst. Sci..

[15]  R. Daniel Mauldin,et al.  Hausdorff dimension in graph directed constructions , 1988 .

[16]  Stephen J. Willson,et al.  Calculating growth rates and moments for additive cellular automata , 1991, Discret. Appl. Math..

[17]  Heinz-Otto Peitgen,et al.  Global analysis of self-similarity features of cellular automata: selected examples , 1995 .