Algebraic Methodology and Software Technology

ion for Safety, Induction for Liveness . . . . . . . . . . . . . . . . . . . . . . . . . 20 Muffy Calder Counting Votes with Formal Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Bart Jacobs Agent-Oriented Programming: Where Do We Stand? . . . . . . . . . . . . . . . . . . . 23 John-Jules Charles Meyer

[1]  Bernhard Heinemann,et al.  Extended Canonicity of Certain Topological Properties of Set Spaces , 2003, LPAR.

[2]  Edith Hemaspaandra,et al.  A modal perspective on the computational complexity of attribute value grammar , 1993, J. Log. Lang. Inf..

[3]  J. C. C. McKinsey,et al.  A Solution of the Decision Problem for the Lewis systems S2 and S4, with an Application to Topology , 1941, J. Symb. Log..

[4]  Lawrence S. Moss,et al.  Topological Reasoning and the Logic of Knowledge , 1996, Ann. Pure Appl. Log..

[5]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[6]  Klaus Weihrauch,et al.  Computable Analysis , 2005, CiE.

[7]  W. van der Hoek,et al.  Epistemic logic for AI and computer science , 1995, Cambridge tracts in theoretical computer science.

[8]  David Gabelaia,et al.  Modal definability in topology , 2001 .

[9]  Konstantinos Georgatos,et al.  Knowledge on Treelike Spaces , 1997, Stud Logica.

[10]  Koushik Sen,et al.  An Executable Specification of Asynchronous Pi-Calculus Semantics and May Testing in Maude 2.0 , 2002, Electron. Notes Theor. Comput. Sci..

[11]  Bernhard Heinemann,et al.  A Hybrid Treatment of Evolutionary Sets , 2002, MICAI.

[12]  Bernhard Heinemann Separating Sets by Modal Formulas , 1998, AMAST.

[13]  Bernhard Heinemann,et al.  Knowledge over Dense Flows of Time (from a Hybrid Point of View) , 2002, FSTTCS.

[14]  Bernhard Heinemann An application of monodic first-order temporal logic to reasoning about knowledge , 2003, 10th International Symposium on Temporal Representation and Reasoning, 2003 and Fourth International Conference on Temporal Logic. Proceedings..

[15]  Thomas W. Reps,et al.  Precise Interprocedural Dataflow Analysis with Applications to Constant Propagation , 1995, TAPSOFT.

[16]  Bernhard Heinemann,et al.  Generalizing the Modal and Temporal Logic of Linear Time , 2000, AMAST.

[17]  José Alberto Verdejo López,et al.  Executable Structural Operational Semantics in Maude , 2003 .

[18]  Carolyn L. Talcott,et al.  Plan in Maude: Specifying an Active Network Programming Language , 2004, WRLA.

[19]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[20]  Reinhard Wilhelm,et al.  Parametric shape analysis via 3-valued logic , 1999, POPL '99.

[21]  J. A. López,et al.  Maude como marco semántico ejecutable: CD-ROM , 2003 .

[22]  Patrick Blackburn,et al.  Representation, Reasoning, and Relational Structures: a Hybrid Logic Manifesto , 2000, Log. J. IGPL.

[23]  Maarten Marx,et al.  The Computational Complexity of Hybrid Temporal Logics , 2000, Log. J. IGPL.

[24]  Konstantinos Georgatos,et al.  Knowledge Theoretic Properties of Topological Spaces , 1992, Logic at Work.