Four-dimensional variational data assimilation for a limited area model

ABSTRACT A 4-dimensional variational data assimilation (4D-Var) scheme for the HIgh Resolution Limited Area Model (HIRLAM) forecasting system is described in this article. The innovative approaches to the multi-incremental formulation, the weak digital filter constraint and the semi-Lagrangian time integration are highlighted with some details. The implicit dynamical structure functions are discussed using single observation experiments, and the sensitivity to various parameters of the 4D-Var formulation is illustrated. To assess the meteorological impact of HIRLAM 4D-Var, data assimilation experiments for five periods of 1 month each were performed, using HIRLAM 3D-Var as a reference. It is shown that the HIRLAM 4D-Var consistently out-performs the HIRLAM 3D-Var, in particular for cases with strong mesoscale storm developments. The computational performance of the HIRLAM 4D-Var is also discussed. The review process was handled by Subject Editor Abdel Hannachi

[1]  Jean-Noël Thépaut,et al.  Impact of the Digital Filter as a Weak Constraint in the Preoperational 4DVAR Assimilation System of Météo-France , 2001 .

[2]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[3]  Philip J. Rasch,et al.  A Comparison of the CCM3 Model Climate Using Diagnosed and Predicted Condensate Parameterizations , 1998 .

[4]  Milija Zupanski,et al.  Regional Four-Dimensional Variational Data Assimilation in a Quasi-Operational Forecasting Environment , 1993 .

[5]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[6]  Y. Sasaki,et al.  An ObJective Analysis Based on the Variational Method , 1958 .

[7]  N. Gustafsson,et al.  Sensitivity experiments with the spectral HIRLAM and its adjoint , 1996 .

[8]  Graeme Kelly,et al.  A satellite radiance‐bias correction scheme for data assimilation , 2001 .

[9]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[10]  Mariano Hortal,et al.  The development and testing of a new two‐time‐level semi‐Lagrangian scheme (SETTLS) in the ECMWF forecast model , 2002 .

[11]  Anthony Hollingsworth,et al.  The statistical structure of short-range forecast errors as determined from radiosonde data , 1986 .

[12]  F. Veerse,et al.  Multiple‐truncation incremental approach for four‐dimensional variational data assimilation , 1998 .

[13]  Hannu Savijärvi,et al.  Fast radiation parameterization schemes for mesoscale and short-range forecast models , 1990 .

[14]  P. Courtier,et al.  Extended assimilation and forecast experiments with a four‐dimensional variational assimilation system , 1998 .

[15]  A. Lorenc A Global Three-Dimensional Multivariate Statistical Interpolation Scheme , 1981 .

[16]  J. Redelsperger,et al.  A turbulence scheme allowing for mesoscale and large‐eddy simulations , 2000 .

[17]  Jarmo Rantakokko Strategies for Parallel Variational Data Assimilation , 1997, Parallel Comput..

[18]  P. Courtier,et al.  The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). II: Structure functions , 1998 .

[19]  Sensitivity of forecast errors to initial and lateral boundary conditions , 1998 .

[20]  Jan Erik Haugen,et al.  A Spectral Limited-Area Model Formulation with Time-dependent Boundary Conditions Applied to the Shallow-Water Equations , 1993 .

[21]  Peter Lynch,et al.  The Dolph-Chebyshev Window: A Simple Optimal Filter , 1997 .

[22]  J. Derber,et al.  A reformulation of the background error covariance in the ECMWF global data assimilation system , 1999 .

[23]  Jean-François Geleyn,et al.  Mesoscale Background Error Covariances: Recent Results Obtained with the Limited-Area Model ALADIN over Morocco , 2000 .

[24]  A. Lorenc Optimal nonlinear objective analysis , 1988 .

[25]  Herschel L. Mitchell,et al.  Horizontal structure of hemispheric forecast error correlations for geopotential and temperature , 1986 .

[26]  Heikki Järvinen,et al.  Variational quality control , 1999 .

[27]  L. Berre Estimation of Synoptic and Mesoscale Forecast Error Covariances in a Limited-Area Model , 2000 .

[28]  Andrew C. Lorenc,et al.  Analysis methods for numerical weather prediction , 1986 .

[29]  Monique Tanguay,et al.  The tangent linear model for semi-Lagrangian schemes: linearizing the process of interpolation , 1996 .

[30]  Peter Lynch,et al.  Initialization of the HIRLAM Model Using a Digital Filter , 1992 .

[31]  Philippe Courtier,et al.  Dynamical structure functions in a four‐dimensional variational assimilation: A case study , 1996 .

[32]  N. Gustafsson,et al.  A comparison of the HIRLAM gridpoint and spectral semi-Lagrangian models , 1996 .

[33]  P. L. Houtekamer,et al.  A System Simulation Approach to Ensemble Prediction , 1996 .

[34]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[35]  J. Rantakokko,et al.  Three-dimensional variational data assimilation for a limited area model : Part II: Observation handling and assimilation experiments , 2001 .

[36]  R. Daley The Analysis of Synoptic Scale Divergence by a Statistical Interpolation Procedure , 1985 .

[37]  Claude Lemaréchal,et al.  Some numerical experiments with variable-storage quasi-Newton algorithms , 1989, Math. Program..

[38]  A. Simmons,et al.  An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates , 1981 .

[39]  S. Cohn,et al.  Assessing the Effects of Data Selection with the DAO Physical-Space Statistical Analysis System* , 1998 .

[40]  Data Assimilation for High-Resolution Limited-Area Models (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .

[41]  Andrew C. Lorenc,et al.  Development of an Operational Variational Assimilation Scheme (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .

[42]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[43]  John Derber,et al.  The National Meteorological Center's spectral-statistical interpolation analysis system , 1992 .

[44]  Stéphane Laroche,et al.  Implementation of a 3D variational data assimilation system at the Canadian Meteorological Centre. Part I: The global analysis , 1999 .

[45]  N. Gustafsson,et al.  Using an adjoint model to improve an optimum interpolation-based data-assimilation system , 1997 .

[46]  G. Boer,et al.  Homogeneous and Isotropic Turbulence on the Sphere , 1983 .

[47]  J. M. Lewis,et al.  The use of adjoint equations to solve a variational adjustment problem with advective constraints , 1985 .