Four-dimensional variational data assimilation for a limited area model
暂无分享,去创建一个
Nils Gustafsson | Kristian Mogensen | Ole Vignes | Xiang-Yu Huang | Tomas Wilhelmsson | Magnus Lindskog | Sigurdur Thorsteinsson | K. Mogensen | N. Gustafsson | M. Lindskog | Xiangyu Huang | O. Vignes | Xiaohua Yang | S. Thorsteinsson | Xiaohua Yang | T. Wilhelmsson
[1] Jean-Noël Thépaut,et al. Impact of the Digital Filter as a Weak Constraint in the Preoperational 4DVAR Assimilation System of Météo-France , 2001 .
[2] M. Ghil,et al. Data assimilation in meteorology and oceanography , 1991 .
[3] Philip J. Rasch,et al. A Comparison of the CCM3 Model Climate Using Diagnosed and Predicted Condensate Parameterizations , 1998 .
[4] Milija Zupanski,et al. Regional Four-Dimensional Variational Data Assimilation in a Quasi-Operational Forecasting Environment , 1993 .
[5] Eugenia Kalnay,et al. Atmospheric Modeling, Data Assimilation and Predictability , 2002 .
[6] Y. Sasaki,et al. An ObJective Analysis Based on the Variational Method , 1958 .
[7] N. Gustafsson,et al. Sensitivity experiments with the spectral HIRLAM and its adjoint , 1996 .
[8] Graeme Kelly,et al. A satellite radiance‐bias correction scheme for data assimilation , 2001 .
[9] P. Courtier,et al. A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .
[10] Mariano Hortal,et al. The development and testing of a new two‐time‐level semi‐Lagrangian scheme (SETTLS) in the ECMWF forecast model , 2002 .
[11] Anthony Hollingsworth,et al. The statistical structure of short-range forecast errors as determined from radiosonde data , 1986 .
[12] F. Veerse,et al. Multiple‐truncation incremental approach for four‐dimensional variational data assimilation , 1998 .
[13] Hannu Savijärvi,et al. Fast radiation parameterization schemes for mesoscale and short-range forecast models , 1990 .
[14] P. Courtier,et al. Extended assimilation and forecast experiments with a four‐dimensional variational assimilation system , 1998 .
[15] A. Lorenc. A Global Three-Dimensional Multivariate Statistical Interpolation Scheme , 1981 .
[16] J. Redelsperger,et al. A turbulence scheme allowing for mesoscale and large‐eddy simulations , 2000 .
[17] Jarmo Rantakokko. Strategies for Parallel Variational Data Assimilation , 1997, Parallel Comput..
[18] P. Courtier,et al. The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). II: Structure functions , 1998 .
[19] Sensitivity of forecast errors to initial and lateral boundary conditions , 1998 .
[20] Jan Erik Haugen,et al. A Spectral Limited-Area Model Formulation with Time-dependent Boundary Conditions Applied to the Shallow-Water Equations , 1993 .
[21] Peter Lynch,et al. The Dolph-Chebyshev Window: A Simple Optimal Filter , 1997 .
[22] J. Derber,et al. A reformulation of the background error covariance in the ECMWF global data assimilation system , 1999 .
[23] Jean-François Geleyn,et al. Mesoscale Background Error Covariances: Recent Results Obtained with the Limited-Area Model ALADIN over Morocco , 2000 .
[24] A. Lorenc. Optimal nonlinear objective analysis , 1988 .
[25] Herschel L. Mitchell,et al. Horizontal structure of hemispheric forecast error correlations for geopotential and temperature , 1986 .
[26] Heikki Järvinen,et al. Variational quality control , 1999 .
[27] L. Berre. Estimation of Synoptic and Mesoscale Forecast Error Covariances in a Limited-Area Model , 2000 .
[28] Andrew C. Lorenc,et al. Analysis methods for numerical weather prediction , 1986 .
[29] Monique Tanguay,et al. The tangent linear model for semi-Lagrangian schemes: linearizing the process of interpolation , 1996 .
[30] Peter Lynch,et al. Initialization of the HIRLAM Model Using a Digital Filter , 1992 .
[31] Philippe Courtier,et al. Dynamical structure functions in a four‐dimensional variational assimilation: A case study , 1996 .
[32] N. Gustafsson,et al. A comparison of the HIRLAM gridpoint and spectral semi-Lagrangian models , 1996 .
[33] P. L. Houtekamer,et al. A System Simulation Approach to Ensemble Prediction , 1996 .
[34] G. Evensen. Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .
[35] J. Rantakokko,et al. Three-dimensional variational data assimilation for a limited area model : Part II: Observation handling and assimilation experiments , 2001 .
[36] R. Daley. The Analysis of Synoptic Scale Divergence by a Statistical Interpolation Procedure , 1985 .
[37] Claude Lemaréchal,et al. Some numerical experiments with variable-storage quasi-Newton algorithms , 1989, Math. Program..
[38] A. Simmons,et al. An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates , 1981 .
[39] S. Cohn,et al. Assessing the Effects of Data Selection with the DAO Physical-Space Statistical Analysis System* , 1998 .
[41] Andrew C. Lorenc,et al. Development of an Operational Variational Assimilation Scheme (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .
[42] F. L. Dimet,et al. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .
[43] John Derber,et al. The National Meteorological Center's spectral-statistical interpolation analysis system , 1992 .
[44] Stéphane Laroche,et al. Implementation of a 3D variational data assimilation system at the Canadian Meteorological Centre. Part I: The global analysis , 1999 .
[45] N. Gustafsson,et al. Using an adjoint model to improve an optimum interpolation-based data-assimilation system , 1997 .
[46] G. Boer,et al. Homogeneous and Isotropic Turbulence on the Sphere , 1983 .
[47] J. M. Lewis,et al. The use of adjoint equations to solve a variational adjustment problem with advective constraints , 1985 .