An integrated framework for managing sensor data uncertainty using cloud computing

In recent years, an increasing number of data-intensive applications deal with continuously changing data objects (CCDOs), such as data streams from sensors and tracking devices. In these applications, the underlying data management system must support new types of spatiotemporal queries that refer to the spatiotemporal trajectories of the CCDOs. In contrast to traditional data objects, CCDOs have continuously changing attributes. Therefore, the spatiotemporal relation between any two CCDOs can change over time. This problem can be more complicated, since the CCDO trajectories are associated with a degree of uncertainty at every point in time. This is due to the fact that databases can only be discretely updated. The paper formally presents a comprehensive framework for managing CCDOs with insights into the spatiotemporal uncertainty problem and presents an original parallel-processing solution for efficiently managing the uncertainty using the map-reduce platform of cloud computing.

[1]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[2]  Max J. Egenhofer,et al.  Modeling Moving Objects over Multiple Granularities , 2002, Annals of Mathematics and Artificial Intelligence.

[3]  Bonghee Hong,et al.  Dynamic Splitting Policies of the Adaptive 3DR-Tree for Indexing Continuously Moving Objects , 2003, DEXA.

[4]  A. Prasad Sistla,et al.  Updating and Querying Databases that Track Mobile Units , 1999, Distributed and Parallel Databases.

[5]  Chinya V. Ravishankar,et al.  PA-Tree: A Parametric Indexing Scheme for Spatio-temporal Trajectories , 2005, SSTD.

[6]  Byunggu Yu,et al.  MBR Models for Uncertainty Regions of Moving Objects , 2008, DASFAA.

[7]  Frank Dürr,et al.  Remote real-time trajectory simplification , 2009, 2009 IEEE International Conference on Pervasive Computing and Communications.

[8]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[9]  Jack Dongarra,et al.  Sourcebook of parallel computing , 2003 .

[10]  Iain D. Craig,et al.  COMPUTATIONAL GEOMETRY IN C, SECOND EDITION, by Joseph O'Rourke, CUP, Cambridge, UK, 1998, 376 pages, inc. References and Index (Pb, £55) , 1999, Robotica.

[11]  Byunggu Yu,et al.  Interpolating and Using Most Likely Trajectories in Moving-Objects Databases , 2006, DEXA.

[12]  B. Yu A query system for spatiotemporal database applications , 2005, 18th International Conference on Systems Engineering (ICSEng'05).

[13]  J. O´Rourke,et al.  Computational Geometry in C: Arrangements , 1998 .

[14]  Sunil Prabhakar,et al.  Evaluating probabilistic queries over imprecise data , 2003, SIGMOD '03.

[15]  Frank Dürr,et al.  Scalable processing of trajectory-based queries in space-partitioned moving objects databases , 2008, GIS '08.

[16]  Ian T. Foster The Anatomy of the Grid: Enabling Scalable Virtual Organizations , 2001, Euro-Par.

[17]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[18]  A. Prasad Sistla,et al.  Querying the Uncertain Position of Moving Objects , 1997, Temporal Databases, Dagstuhl.

[19]  Byunggu Yu,et al.  The Tornado Model: Uncertainty Model for Continuously Changing Data , 2007, DASFAA.

[20]  Steven D. Prager,et al.  Environmental contextualization of uncertainty for moving objects , 2007, Comput. Environ. Urban Syst..

[21]  Dieter Pfoser,et al.  Capturing the Uncertainty of Moving-Object Representations , 1999, SSD.

[22]  Dieter Pfoser,et al.  Novel Approaches in Query Processing for Moving Object Trajectories , 2000, VLDB 2000.

[23]  Pradeep K. Behera,et al.  Environmental urban runoff monitoring , 2010, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[24]  Wei-Ying Ma,et al.  Understanding mobility based on GPS data , 2008, UbiComp.

[25]  Sunil Prabhakar,et al.  Querying imprecise data in moving object environments , 2003, IEEE Transactions on Knowledge and Data Engineering.

[26]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[27]  Alfredo Cuzzocrea,et al.  A Grid Framework for Approximate Aggregate Query Answering on Summarized Sensor Network Readings , 2004, OTM Workshops.

[28]  Dieter Pfoser,et al.  Querying the trajectories of on-line mobile objects , 2001, MobiDe '01.

[29]  Christian S. Jensen,et al.  Lopez: "Indexing the Positions of Continuously Moving Objects , 2000, SIGMOD 2000.

[30]  Ian T. Foster,et al.  The anatomy of the grid: enabling scalable virtual organizations , 2001, Proceedings First IEEE/ACM International Symposium on Cluster Computing and the Grid.

[31]  Frank Leymann,et al.  Towards Integration of Uncertain Sensor Data into Context-aware Workflows , 2009, GI Jahrestagung.

[32]  Dieter Pfoser,et al.  Novel Approaches to the Indexing of Moving Object Trajectories , 2000, VLDB.

[33]  Pankaj K. Agarwal,et al.  Indexing moving points (extended abstract) , 2000, PODS '00.

[34]  Klaus H. Hinrichs,et al.  Managing uncertainty in moving objects databases , 2004, TODS.

[35]  Alfredo Cuzzocrea Retrieving Accurate Estimates to OLAP Queries over Uncertain and Imprecise Multidimensional Data Streams , 2011, SSDBM.

[36]  C. V. Ravi,et al.  A distributed file system , 1975, ACM '75.

[37]  Ouri Wolfson,et al.  The Geometry of Uncertainty in Moving Objects Databases , 2002, EDBT.

[38]  Byunggu Yu,et al.  Vector model in support of versatile georeferenced video search , 2010, MMSys '10.

[39]  Christian S. Jensen,et al.  Indexing the Positions of Continuously Moving Objects , 2000, SIGMOD Conference.

[40]  Byunggu Yu,et al.  Indexing Regional Objects in High-Dimensional Spaces , 2006 .

[41]  Dimitrios Gunopulos,et al.  On indexing mobile objects , 1999, PODS '99.

[42]  Tom White,et al.  Hadoop: The Definitive Guide , 2009 .

[43]  Xing Xie,et al.  Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.