The nature of structure and bonding between transition metal and mixed Si‐Ge tetramers: A 20‐electron superatom system

A novel superatom species with 20‐electron system, SixGeyM+ (x + y = 4; M = Nb, Ta), was properly proposed. The trigonal bipyramid structures for the studied systems were identified as the putative global minimum by means of the density functional theory calculations. The high chemical stability can be explained by the strong p‐d hybridization between transition metal and mixed Si‐Ge tetramers, and closed‐shell valence electron configuration [1S21P62S21D10]. Meanwhile, the chemical bondings between metal atom and the tetramers can be recognized by three localized two‐center two‐electron (2c‐2e) and delocalized 3c‐2e σ‐bonds. For all the doped structures studied here, it was found that the π‐ and σ‐electrons satisfy the 2(N + 1)2 counting rule, and thus these clusters possess spherically double (π and σ) aromaticity, which is also confirmed by the negative nucleus‐independent chemical shifts values. Consequently, all the calculated results provide a further understanding for structural stabilities and electronic properties of transition metal‐doped semiconductor clusters. © 2016 Wiley Periodicals, Inc.

[1]  D. Zubarev,et al.  Revealing intuitively assessable chemical bonding patterns in organic aromatic molecules via adaptive natural density partitioning. , 2008, The Journal of organic chemistry.

[2]  M. Moseler,et al.  A 58-electron superatom-complex model for the magic phosphine-protected gold clusters (Schmid-gold, Nanogold®) of 1.4-nm dimension , 2011 .

[3]  E. Janssens,et al.  Structure assignment, electronic properties, and magnetism quenching of endohedrally doped neutral silicon clusters, Si(n)Co (n = 10-12). , 2014, The journal of physical chemistry. A.

[4]  Charles W. Bauschlicher,et al.  A comparison of the accuracy of different functionals , 1995 .

[5]  Vijay Kumar,et al.  Metal-encapsulated fullerenelike and cubic caged clusters of silicon. , 2001, Physical review letters.

[6]  Lai‐Sheng Wang,et al.  Cobalt-centred boron molecular drums with the highest coordination number in the CoB16− cluster , 2015, Nature Communications.

[7]  Qianran He,et al.  Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. , 2016, Nanoscale.

[8]  R. Johnston,et al.  Global optimization of small bimetallic Pd-Co binary nanoalloy clusters: a genetic algorithm approach at the DFT level. , 2016, Physical chemistry chemical physics : PCCP.

[9]  W. Goddard,et al.  Accurate Band Gaps for Semiconductors from Density Functional Theory , 2011 .

[10]  D. Bandyopadhyay,et al.  Density functional investigation of structure and stability of Ge(n) and Ge(n)Ni (n = 1-20) clusters: validity of the electron counting rule. , 2010, The journal of physical chemistry. A.

[11]  A. Nakajima,et al.  Heterodimerization via the Covalent Bonding of Ta@Si16 Nanoclusters and C60 Molecules , 2015 .

[12]  W. Schwarz,et al.  An 18-electron system containing a superheavy element: theoretical studies of sg@au12. , 2015, Inorganic chemistry.

[13]  S. M. Beck,et al.  Studies of silicon cluster–metal atom compound formation in a supersonic molecular beam , 1987 .

[14]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[15]  Ju-Guang Han,et al.  Geometries and electronic properties of the tungsten-doped germanium clusters: WGen (n = 1-17). , 2006, The journal of physical chemistry. A.

[16]  Martin R. Saunders,et al.  Stochastic search for isomers on a quantum mechanical surface , 2004, J. Comput. Chem..

[17]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[18]  H. Hiura,et al.  Formation of metal-encapsulating Si cage clusters. , 2001, Physical review letters.

[19]  D. Zubarev,et al.  Deciphering chemical bonding in golden cages. , 2009, The journal of physical chemistry. A.

[20]  J. E. Klepeis,et al.  Calculation of optical absorption spectra of hydrogenated Si clusters: Bethe-Salpeter equation versus time-dependent local-density approximation , 2003 .

[21]  M. Nguyen,et al.  High magnetic moments in manganese-doped silicon clusters. , 2012, Chemistry.

[22]  Yanming Ma,et al.  B38: an all-boron fullerene analogue. , 2014, Nanoscale.

[23]  P. Pyykkö,et al.  A new, centered 32-electron system: the predicted [U@Si20]6−-like isoelectronic series , 2012 .

[24]  A. Hirsch,et al.  Spherical Aromaticity of Inorganic Cage Molecules. , 2001, Angewandte Chemie.

[25]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[26]  S. Nagase,et al.  Structural and electronic properties of metal-encapsulated silicon clusters in a large size range. , 2003, Physical review letters.

[27]  S. Tretiak,et al.  Ligand Effects on Optical Properties of Small Gold Clusters: A TDDFT Study , 2012 .

[28]  R. Richter,et al.  Coordination-driven magnetic-to-nonmagnetic transition in manganese-doped silicon clusters , 2013, 1302.6718.

[29]  A. Nakajima,et al.  The infrared HOMO–LUMO gap of germanium clusters , 1998 .

[30]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[31]  C. Pouchan,et al.  Doping-enhanced hyperpolarizabilities of silicon clusters: a global ab initio and density functional theory study of Si10 (Li, Na, K)n (n=1, 2) clusters. , 2011, The Journal of chemical physics.

[32]  Guanghou Wang,et al.  Site-specific analysis of dipole polarizabilities of heterogeneous systems: iron-doped Si(n) (n = 1-14) clusters. , 2013, The Journal of chemical physics.

[33]  Kehe Su,et al.  Structure, stability and electronic property of the gold-doped germanium clusters: AuGen (n = 2–13) , 2009 .

[34]  Jijun Zhao,et al.  Discovery of a silicon-based ferrimagnetic wheel structure in V(x)Si(12)(-) (x = 1-3) clusters: photoelectron spectroscopy and density functional theory investigation. , 2014, Nanoscale.

[35]  Xiyuan Sun,et al.  An icosahedral Ta12(2+) cluster with spherical aromaticity. , 2014, Dalton transactions.

[36]  Truong Ba Tai,et al.  Lithium atom can be doped at the center of a germanium cage: The stable icosahedral Ge12Li− cluster and derivatives , 2010 .

[37]  S. M. Beck,et al.  Mixed metal–silicon clusters formed by chemical reaction in a supersonic molecular beam: Implications for reactions at the metal/silicon interface , 1989 .

[38]  A. Hirsch,et al.  Spherical aromaticity of fullerenes. , 2001, Chemical reviews.

[39]  Truong Ba Tai,et al.  A Stochastic Search for the Structures of Small Germanium Clusters and Their Anions: Enhanced Stability by Spherical Aromaticity of the Ge10 and Ge12(2-) Systems. , 2011, Journal of chemical theory and computation.

[40]  M. Nguyen,et al.  The aromatic 8-electron cubic silicon clusters Be@Si(8), B@Si(8)(+), and C@Si(8)(2+). , 2010, The journal of physical chemistry. A.

[41]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[42]  Andreoni,et al.  Structure of nanoscale silicon clusters. , 1994, Physical review letters.

[43]  Theoretical study on the structures and optical absorption of Si₁₇₂ nanoclusters. , 2015, Nanoscale.

[44]  Anastassia N Alexandrova,et al.  Search for the Lin(0/+1/-1) (n = 5-7) Lowest-Energy Structures Using the ab Initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters. , 2005, Journal of chemical theory and computation.

[45]  Lai‐Sheng Wang,et al.  Beyond organic chemistry: aromaticity in atomic clusters. , 2016, Physical chemistry chemical physics : PCCP.

[46]  Vijay Kumar,et al.  A initio calculations of electronic structures, polarizabilities, Raman and infrared spectra, optical gaps, and absorption spectra of M@Si16 (M=Ti and Zr) clusters , 2003 .

[47]  R. Hoffmann The Many Guises of Aromaticity , 2015 .

[48]  S. Grimme,et al.  High level ab initio calculations of the optical gap of small silicon quantum dots. , 2001, Physical review letters.

[49]  Truong Ba Tai,et al.  The group 14 cationic clusters by encapsulation of coinage metals X10M+, with X = Ge, Sn, Pb and M = Cu, Ag, Au: Enhanced stability of 40 valence electron systems , 2011 .

[50]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[51]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[52]  Richard L. Martin NATURAL TRANSITION ORBITALS , 2003 .

[53]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[54]  Guanghou Wang,et al.  Growth behavior and magnetic properties of Si n Fe ( n = 2 – 14 ) clusters , 2006 .

[55]  Matthias Brack,et al.  The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches , 1993 .

[56]  Noel M. O'Boyle,et al.  cclib: A library for package‐independent computational chemistry algorithms , 2008, J. Comput. Chem..

[57]  E. Janssens,et al.  Structures of silicon cluster cations in the gas phase. , 2009, Journal of the American Chemical Society.

[58]  E. Janssens,et al.  Structural Identification of Gold-Doped Silicon Clusters via Far-Infrared Spectroscopy , 2015 .

[59]  Alexander I Boldyrev,et al.  Developing paradigms of chemical bonding: adaptive natural density partitioning. , 2008, Physical chemistry chemical physics : PCCP.

[60]  Bicai Pan,et al.  Structures of medium-sized silicon clusters , 1998, Nature.

[61]  A. Fielicke,et al.  Gas-phase structures of neutral silicon clusters. , 2012, The Journal of chemical physics.

[62]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[63]  R. Johnston,et al.  Structures and Chemical Ordering of Small Cu-Ag Clusters , 2010 .

[64]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[65]  M. Nguyen,et al.  Disparate effects of Cu and V on structures of exohedral transition metal-doped silicon clusters: a combined far-infrared spectroscopic and computational study. , 2010, Journal of the American Chemical Society.

[66]  M. Nguyen,et al.  The structures of neutral transition metal doped silicon clusters, Si(n)X (n = 6-9; X = V, Mn). , 2013, The Journal of chemical physics.

[67]  Gernot Frenking,et al.  Investigation of Donor-Acceptor Interactions: A Charge Decomposition Analysis Using Fragment Molecular Orbitals , 1995 .

[68]  Hari Singh Nalwa,et al.  Handbook of advanced electronic and photonic materials and devices , 2001 .

[69]  Vijay Kumar,et al.  Magic behavior of Si15M and Si16M (M=Cr, Mo, and W) clusters , 2002 .

[70]  C. Majumder,et al.  Structural and electronic properties of Sin, Sin+, and AlSin-1 (n=2-13) clusters: Theoretical investigation based on ab initio molecular orbital theory , 2004 .

[71]  Andreas Hirsch,et al.  Spherical Aromaticity in Ih Symmetrical Fullerenes: The 2(N+1)2 Rule. , 2000, Angewandte Chemie.

[72]  Truong Ba Tai,et al.  Evolution of structures and stabilities of zinc-doped tin clusters SnnZn, n = 1–12. Three-dimensional aromaticity of the magic clusters Sn10Zn and Sn12Zn , 2011 .

[73]  R. Schäfer,et al.  Polarizabilities of SiN (N = 8–75) clusters from molecular beam electric deflection experiments , 2012 .

[74]  Frank Weinhold,et al.  Natural bond orbital analysis of near‐Hartree–Fock water dimer , 1983 .

[75]  D. Harding,et al.  Structural identification of caged vanadium doped silicon clusters. , 2011, Physical review letters.

[76]  Alexander I Boldyrev,et al.  All-metal aromaticity and antiaromaticity. , 2005, Chemical reviews.

[77]  D. Harding,et al.  Unusual Bonding in Platinum Carbido Clusters. , 2013, The journal of physical chemistry letters.

[78]  Jun Li,et al.  Observation of an all-boron fullerene. , 2014, Nature chemistry.

[79]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[80]  Wei Qin,et al.  Stabilities and fragmentation energies of Sin clusters (n = 2–33) , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[81]  A. Grubisic,et al.  Photoelectron spectroscopy of lanthanide-silicon cluster anions LnSi(n)(-) (3 , 2009, Journal of the American Chemical Society.

[82]  A. Boldyrev,et al.  Recent advances in aromaticity and antiaromaticity in transition-metal systems , 2011 .

[83]  Lai‐Sheng Wang,et al.  Complexes between planar boron clusters and transition metals: a photoelectron spectroscopy and ab initio study of CoB12(-) and RhB12(-). , 2014, The journal of physical chemistry. A.

[84]  Xiao Jun Li,et al.  Silicon hydride clusters Si5Hn (n = 3-12) and their anions: structures, thermochemistry, and electron affinities. , 2006, The journal of physical chemistry. A.

[85]  Excited states and optical absorption of small semiconducting clusters: Dopants, defects and charging , 2011 .

[86]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[87]  Yun Geng,et al.  Density functional theory characterization and design of high-performance diarylamine-fluorene dyes with different π spacers for dye-sensitized solar cells , 2012 .

[88]  Haijun Jiao,et al.  What is aromaticity? , 1996, J. Chem. Inf. Comput. Sci..

[89]  K. Koyasu,et al.  Selective formation of MSi16 (M = Sc, Ti, and V). , 2005, Journal of the American Chemical Society.

[90]  E. Janssens,et al.  Structural determination of niobium-doped silicon clusters by far-infrared spectroscopy and theory. , 2016, Physical chemistry chemical physics : PCCP.

[91]  E. Janssens,et al.  The geometric structure of silver-doped silicon clusters. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.