Red refinements of simplices into congruent subsimplices

Abstract We show that in dimensions higher than two, the popular “red refinement” technique, commonly used for simplicial mesh refinements and adaptivity in the finite element analysis and practice, never yields subsimplices which are all acute even for an acute father element as opposed to the two-dimensional case. In the three-dimensional case we prove that there exists only one tetrahedron that can be partitioned by red refinement into eight congruent subtetrahedra that are all similar to the original one.

[1]  Miroslav Fiedler,et al.  Über qualitative Winkeleigenschaften der Simplexe , 1957 .

[2]  Sergey Korotov,et al.  Acute Type Refinements of Tetrahedral Partitions of Polyhedral Domains , 2001, SIAM J. Numer. Anal..

[3]  Jürgen Bey,et al.  Simplicial grid refinement: on Freudenthal's algorithm and the optimal number of congruence classes , 2000, Numerische Mathematik.

[4]  Barry Joe,et al.  Quality local refinement of tetrahedral meshes based on 8-subtetrahedron subdivision , 1996, Math. Comput..

[5]  Sergey Korotov,et al.  The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem , 2008 .

[6]  Sergey Korotov,et al.  The Strengthened Cauchy-Bunyakowski-Schwarz Inequality for n-Simplicial Linear Finite Elements , 2004, NAA.

[7]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[8]  Jirí Matousek,et al.  On the Nonexistence of k-reptile Tetrahedra , 2011, Discret. Comput. Geom..

[9]  T. Strouboulis,et al.  How to generate local refinements of unstructured tetrahedral meshes satisfying a regularity ball condition , 1997 .

[10]  H. Freudenthal Simplizialzerlegungen von Beschrankter Flachheit , 1942 .

[11]  Michal Křížek,et al.  An equilibrium finite element method in three-dimensional elasticity , 1982 .

[12]  Sergey Korotov,et al.  Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions , 2005, Numerische Mathematik.

[13]  Rainer Mlitz Radicals and semisimple classes of Ω-groups , 1980 .

[14]  H. Debrunner,et al.  TILING EUCLIDEAN d-SPACE WITH CONGRUENT SIMPLEXES , 1985 .

[15]  Sergey Korotov,et al.  Simplicial finite elements in higher dimensions , 2007 .