Pancyclic subgraphs of random graphs

An n-vertex graph is called pancyclic if it contains a cycle of length t for all 3≤t≤n. In this article, we study pancyclicity of random graphs in the context of resilience, and prove that if p>n−1/2, then the random graph G(n, p) a.a.s. satisfies the following property: Every Hamiltonian subgraph of G(n, p) with more than edges is pancyclic. This result is best possible in two ways. First, the range of p is asymptotically tight; second, the proportion of edges cannot be reduced. Our theorem extends a classical theorem of Bondy, and is closely related to a recent work of Krivelevich et al. The proof uses a recent result of Schacht (also independently obtained by Conlon and Gowers). © 2011 Wiley Periodicals, Inc. (Contract grant sponsors: Samsung Scholarship (to C. L.); Schark Fellowship and Parker Fellowship (W. S.).)

[1]  J. A. Bondy,et al.  Basic graph theory: paths and circuits , 1996 .

[2]  Benny Sudakov,et al.  Local resilience of graphs , 2007, Random Struct. Algorithms.

[3]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[4]  Tomasz Łuczak Cycles in random graphs , 1991 .

[5]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[6]  Benny Sudakov,et al.  Local Resilience and Hamiltonicity Maker–Breaker Games in Random Regular Graphs , 2009, Combinatorics, Probability and Computing.

[7]  L. Lovász Combinatorial problems and exercises , 1979 .

[8]  Yoshiharu Kohayakawa,et al.  Almost Spanning Subgraphs of Random Graphs After Adversarial Edge Removal , 2009, Combinatorics, Probability and Computing.

[9]  P. Erdös,et al.  On the structure of linear graphs , 1946 .

[10]  Michael Krivelevich,et al.  On two Hamilton cycle problems in random graphs , 2008 .

[11]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[12]  Benny Sudakov,et al.  Resilient Pancyclicity of Random and Pseudorandom Graphs , 2009, SIAM J. Discret. Math..

[13]  Benny Sudakov,et al.  Bandwidth theorem for sparse graphs , 2010 .

[14]  Yoshiharu Kohayakawa,et al.  Turán's Extremal Problem in Random Graphs: Forbidding Even Cycles , 1995, J. Comb. Theory, Ser. B.

[15]  Hao Huang,et al.  Bandwidth theorem for random graphs , 2012, J. Comb. Theory, Ser. B.

[16]  J. Bondy,et al.  Pancyclic graphs II , 1971 .

[17]  S. Janson,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[18]  M. Simonovits,et al.  Cycles of even length in graphs , 1974 .

[19]  Domingos Dellamonica,et al.  On the Resilience of Long Cycles in Random Graphs , 2008, Electron. J. Comb..

[20]  Y. Kohayakawa,et al.  Turán's extremal problem in random graphs: Forbidding odd cycles , 1996, Comb..

[21]  Colin Cooper 1-Pancyclic Hamilton Cycles in Random Graphs , 1992, Random Struct. Algorithms.

[22]  Tomasz Luczak Cycles in random graphs , 1991, Discret. Math..

[23]  Colin Cooper Pancyclic Hamilton cycles in random graphs , 1991, Discret. Math..

[24]  Benny Sudakov,et al.  On the asymmetry of random regular graphs and random graphs , 2002, Random Struct. Algorithms.

[25]  W. T. Gowers,et al.  RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .

[26]  Wojciech Samotij,et al.  Local resilience of almost spanning trees in random graphs , 2011, Random Struct. Algorithms.

[27]  W. T. Gowers,et al.  Combinatorial theorems in sparse random sets , 2010, 1011.4310.