A multiscale model of protein adsorption on a nanoparticle surface

We present a methodology to quantify the essential interactions at the interface between inorganic solid nanoparticles (NPs) and biological molecules. Our model is based on pre-calculation of the r ...

[1]  Alexandra Kroll,et al.  Testing Metal‐Oxide Nanomaterials for Human Safety , 2010, Advanced materials.

[2]  Bengt-Harald Jonsson,et al.  Transient interaction with nanoparticles "freezes" a protein in an ensemble of metastable near-native conformations. , 2005, Biochemistry.

[3]  Vladimir Lobaskin,et al.  Coarse-grained model of adsorption of blood plasma proteins onto nanoparticles. , 2015, The Journal of chemical physics.

[4]  Bengt-Harald Jonsson,et al.  Protein adsorption onto silica nanoparticles: conformational changes depend on the particles' curvature and the protein stability. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[5]  Gregory A Voth,et al.  A multiscale coarse-graining method for biomolecular systems. , 2005, The journal of physical chemistry. B.

[6]  Luigi Calzolai,et al.  Docking of ubiquitin to gold nanoparticles. , 2012, ACS nano.

[7]  Ravi S Kane,et al.  Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[8]  Glasel Ja Validity of nucleic acid purities monitored by 260nm/280nm absorbance ratios. , 1995 .

[9]  Morteza Mahmoudi,et al.  Protein-Nanoparticle Interactions , 2013 .

[10]  P. Brown,et al.  On the distribution of protein refractive index increments. , 2011, Biophysical journal.

[11]  Martin Hoefling,et al.  ProMetCS: An Atomistic Force Field for Modeling Protein-Metal Surface Interactions in a Continuum Aqueous Solvent. , 2010, Journal of chemical theory and computation.

[12]  Erik G. Brandt,et al.  Molecular Dynamics Simulations of Adsorption of Amino Acid Side Chain Analogues and a Titanium Binding Peptide on the TiO2 (100) Surface , 2015 .

[13]  Dirk Reith,et al.  Deriving effective mesoscale potentials from atomistic simulations , 2002, J. Comput. Chem..

[14]  William J Welsh,et al.  Prediction of the orientations of adsorbed protein using an empirical energy function with implicit solvation. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[15]  C. K. Nandi,et al.  Controlling the Fate of Protein Corona by Tuning Surface Properties of Nanoparticles , 2013 .

[16]  Andrew Emili,et al.  Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. , 2014, ACS nano.

[17]  Wei Zhang,et al.  A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations , 2003, J. Comput. Chem..

[18]  G. Cagney,et al.  Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. , 2007, Angewandte Chemie.

[19]  Alberto Fernandez,et al.  Predicting Cell Association of Surface-Modified Nanoparticles Using Protein Corona Structure - Activity Relationships (PCSAR). , 2015, Current topics in medicinal chemistry.

[20]  Albert Duschl,et al.  Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle , 2013, Journal of Nanobiotechnology.

[21]  Martin Hoefling,et al.  Interaction of amino acids with the Au(111) surface: adsorption free energies from molecular dynamics simulations. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[22]  Slaven Radic,et al.  Direct observation of a single nanoparticle-ubiquitin corona formation. , 2013, Nanoscale.

[23]  Gregory A. Voth,et al.  The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. , 2008, The Journal of chemical physics.