IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

[1]  J. L. Snelgrove,et al.  Development of very-high-density low-enriched-uranium fuels 1 Work supported by the US Department of , 1997 .

[2]  Gerard L. Hofman,et al.  Fission product induced swelling of U–Mo alloy fuel , 2011 .

[3]  S. V. D. Berghe,et al.  Microstructural evolution of U(Mo)–Al(Si) dispersion fuel under irradiation – Destructive analyses of the LEONIDAS E-FUTURE plates , 2013 .

[4]  C. Breckenridge,et al.  Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier , 2014 .

[5]  Le Zhou,et al.  Interdiffusion and reaction between Zr and Al alloys from 425° to 625 °C , 2014 .

[6]  H. A. Saller,et al.  THE CONSTITUTION DIAGRAM OF URANIUM-RICH URANIUM-MOLYBDENUM ALLOYS , 1951 .

[7]  M. K. Meyer,et al.  Irradiation behavior of U6Mn-Al dispersion fuel elements , 2000 .

[8]  C. Detavernier,et al.  Swelling of U(Mo) dispersion fuel under irradiation – Non-destructive analyses of the SELENIUM plates , 2013 .

[9]  H. A. Saller,et al.  TRANSFORMATION KINETICS OF URANIUM-MOLYBDENUM ALLOYS , 1954 .

[10]  A. J. Eycott,et al.  The kinetics of the isothermal decomposition of a gamma-phase uranium - 6 atomic % molybdenum alloy , 1963 .

[11]  Sonal Anand,et al.  New Delhi, India , 2011 .

[12]  A. Dwight The uranium-molybdenum equilibrium diagram below 900° C , 1960 .

[13]  Gerard L. Hofman,et al.  Irradiation behavior of low-enriched U6Fe-Ai dispersion fuel elements , 1987 .

[14]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[15]  K. Bhanumurthy,et al.  Intermetallics in the Zr–Al diffusion zone , 2004 .

[16]  M. C. Marshall,et al.  Co-Rolled U10Mo/Zirconium-Barrier-Layer Monolithic Fuel Foil Fabrication Process , 2010 .

[17]  R. Domagala Phase diagrams of uranium alloys: O.S. Ivanov, T.A. Badaeva, R.M. Sofronova, V.B. Kishenevskii and N.P. Kushnir, translated by A.K. Dabir. Available from the U.S. Dept of Commerce, National Technical Information Service, Springfield, VA 22161, USA , 1984 .

[18]  G. Donzé,et al.  Stabilisation de la phase γ dans les alliages ternaires a base d'uranium-molybdene , 1959 .

[19]  Jae Cheon Jung DEVELOPMENT OF THE DIGITALIZED AUTOMATIC SEISMIC TRIP SYSTEM FOR NUCLEAR POWER PLANTS USING THE SYSTEMS ENGINEERING APPROACH , 2014 .

[20]  R. F. Hehemann,et al.  TRANSFORMATION CHARACTERISTICS OF U-Mo AND U-Mo-Ti ALLOYS , 1964 .

[21]  J. Rest Evolution of fission-gas-bubble-size distribution in recrystallized U–10Mo nuclear fuel , 2010 .

[22]  B. R. Butcher,et al.  Further studies on the decomposition of the γ phase in uranium-low molybdenum alloys , 1963 .

[23]  Man Gyun Na,et al.  ON-POWER DETECTION OF PIPE WALL-THINNED DEFECTS USING IR THERMOGRAPHY IN NPPS , 2014 .

[24]  Daniel M. Wachs,et al.  Fission induced swelling and creep of U–Mo alloy fuel , 2013 .

[25]  D. Keiser,et al.  TEM characterization of U–7Mo/Al–2Si dispersion fuel irradiated to intermediate and high fission densities , 2012 .

[26]  D. Keiser,et al.  Effects of irradiation on the microstructure of U–7Mo dispersion fuel with Al–2Si matrix , 2012 .

[27]  S. Van den Berghe,et al.  Transmission electron microscopy investigation of irradiated U–7 wt%Mo dispersion fuel , 2008 .

[28]  J. Robertson Radiation damage in reactor materials: Published by the International Atomic Energy Agency, Vienna, 1969. Vol. I 465 pages, US $ 13.00; Vol. II, 606 pages, US $ 17.00 (paper covers) , 1970 .

[29]  Y. Sohn,et al.  Interdiffusion Between Zr Diffusion Barrier and U-Mo Alloy , 2012 .

[30]  A. F. Padilha,et al.  Mechanical and thermal behaviour of U–Mo and U–Nb–Zr Alloys , 2013 .

[31]  G. Hofman,et al.  Metallic Fast Reactor Fuels , 2006 .

[32]  E. B. Baumeister,et al.  SELECTION OF THE PIQUA OMR FUEL ELEMENT , 1960 .

[33]  S. Van den Berghe,et al.  Post-irradiation examination of uranium–7 wt% molybdenum atomized dispersion fuel , 2004 .

[34]  S. V. D. Berghe,et al.  Microstructure of U3Si2 fuel plates submitted to a high heat flux , 2004 .

[35]  Douglas E. Burkes,et al.  Effects of Applied Load on 6061-T6 Aluminum Joined Employing a Novel Friction Bonding Process , 2008 .

[36]  G. D. Miller,et al.  A STUDY OF THE INTERDIFFUSION OF ALUMINUM AND ZIRCONIUM , 1964 .

[37]  G. Östberg,et al.  Metallographic study of the transformation of γ phase into (α + γ') phases in a U-1.6 wt% Mo alloy , 1963 .

[38]  Y. Sohn,et al.  Microstructural analysis of as-processed U―10 wt.%Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier , 2010 .

[39]  J. Guillaumin,et al.  Formation de phases de transition dans l'alliage U-7,5% Nb-2,5% Zr , 1973 .

[40]  D. J. Sasmor,et al.  Operating experience with uranium--molybdenum fuel in pulsed reactors , 1973 .

[41]  Daniel M. Wachs,et al.  Microstructural development in irradiated U-7Mo/6061 Al alloy matrix dispersion fuel , 2009 .

[42]  J. L. Snelgrove,et al.  Low-temperature irradiation behavior of uranium–molybdenum alloy dispersion fuel☆ , 2002 .

[43]  D. Keiser,et al.  Fabrication of Monolithic RERTR Fuels by Hot Isostatic Pressing , 2010 .