Mathematics of gravitational lensing: multiple imaging and magnification
暂无分享,去创建一个
[1] Random complex zeroes, I. Asymptotic normality , 2002, math/0210090.
[2] J. Milnor. Dynamics in one complex variable , 2000 .
[3] Brian Rider,et al. A mathematical theory of stochastic microlensing. II. Random images, shear, and the Kac-Rice formula , 2008, 0807.4984.
[4] The Theory of Caustics and Wave Front Singularities with Physical Applications , 1999, gr-qc/9906065.
[5] M. Atiyah,et al. A Lefschetz Fixed Point Formula for Elliptic Complexes: II. Applications , 1968 .
[6] D. Clayton,et al. Placing the Sun and Mainstream SiC Particles in Galactic Chemodynamic Evolution , 1997 .
[7] Israel Kovner. Fermat Principle in Arbitrary Gravitational Fields , 1990 .
[8] P. Schneider,et al. The two-point-mass lens: detailed investigation of a special asymmetric gravitational lens , 1986 .
[9] A. Petters,et al. A universal magnification theorem for higher-order caustic singularities , 2008, 0811.3447.
[10] Joe W. Harris,et al. Principles of Algebraic Geometry: Griffiths/Principles , 1994 .
[11] R. McKenzie. A gravitational lens produces an odd number of images , 1985 .
[12] N. Katz,et al. Random scattering approach to gravitational microlensing , 1986 .
[13] A gravitational lens need not produce an odd number of images , 1994, gr-qc/9402038.
[14] R. Blandford,et al. Fermat's principle, caustics, and the classification of gravitational lens images , 1986 .
[15] Wenbo V. Li,et al. On the expected number of zeros of a random harmonic polynomial , 2008 .
[16] N. Dalal. The Magnification Invariant of Simple Galaxy Lens Models , 1998, astro-ph/9809061.
[17] C. Keeton. Gravitational lensing with stochastic substructure: Effects of the clump mass function and spatial distribution , 2009, 0908.3001.
[18] V. Perlick. On Fermat's principle in general relativity. I. The general case , 1990 .
[19] C. Herdeiro,et al. Stationary Metrics and Optical Zermelo-Randers-Finsler Geometry , 2008, 0811.2877.
[20] P. Schneider,et al. The gravitational lens equation near cusps , 1992 .
[21] A. Petters,et al. Fixed points due to gravitational lenses , 1998 .
[22] V. Perlick. Criteria for multiple imaging in Lorentzian manifolds , 1996 .
[23] R. Blandford,et al. Multiple imaging of quasars by galaxies and clusters , 1984, Nature.
[24] N. Evans,et al. Are there sextuplet and octuplet image systems , 2001, astro-ph/0108374.
[25] No glory in cosmic string theory , 1993 .
[26] Samuel,et al. Fermat's principle in general relativity. , 1992, Physical review. D, Particles and fields.
[27] G. Gibbons,et al. Applications of the Gauss–Bonnet theorem to gravitational lensing , 2008, 0807.0854.
[28] P. Marshall,et al. An Atlas of Predicted Exotic Gravitational Lenses , 2009, 0904.1454.
[29] Infinite dimensional Morse theory and Fermat’s principle in general relativity. I , 1995 .
[30] M. Atiyah,et al. A Lefschetz Fixed Point Formula for Elliptic Complexes: I , 1967 .
[31] M. Deakin. Catastrophe theory. , 1977, Science.
[32] V. Perlick. Global Properties of Gravitational Lens Maps¶in a Lorentzian Manifold Setting , 2000, gr-qc/0009105.
[33] R. Jones. Gravitational Curvature – An Introduction to Einstein's Theory , 1979 .
[34] V. Perlick. On Fermat's principle in general relativity. II. The conformally stationary case , 1990 .
[35] S. Mao,et al. On the Minimum Magnification between Caustic Crossings for Microlensing by Binary and Multiple Stars , 1995 .
[36] A. Petters. Morse theory and gravitational microlensing , 1992 .
[37] W. L. Burke. Multiple Gravitational Imaging by Distributed Masses , 1981 .
[38] A Lefschetz fixed point theorem in gravitational lensing , 2007, math-ph/0703050.
[39] P. J. Forrester,et al. Exact statistical properties of the zeros of complex random polynomials , 1999 .
[40] P. Madau,et al. Compound Gravitational Lensing as a Probe of Dark Matter Substructure within Galaxy Halos , 2001, astro-ph/0108224.
[41] H. Witt. Investigation of high amplification events in light curves of gravitationally lensed quasars. , 1990 .
[42] D. Freedman. The General Case , 2022, Frameworks, Tensegrities, and Symmetry.
[43] A. Petters. Arnold’s singularity theory and gravitational lensing , 1993 .
[44] V. I. Arnol’d. Evolution of singularities of potential flows in collision-free media and the metamorphosis of caustics in three-dimensional space , 1986 .
[45] R. Adler,et al. Random Fields and Geometry , 2007 .
[46] Mario Wschebor,et al. On the distribution of the maximum of a Gaussian field with d parameters , 2005 .
[47] J. Stachel,et al. The Origin of Gravitational Lensing: A Postscript to Einstein's 1936 Science Paper , 1997, Science.
[48] Stephen Smale,et al. Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..
[49] B. Carter,et al. Optical reference geometry for stationary and static dynamics , 1988 .
[50] J. Stewart,et al. Characteristic initial data and wavefront singularities in general relativity , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[51] N. Evans,et al. Lensing Properties of Cored Galaxy Models , 2002, astro-ph/0204206.
[52] B. Gaudi,et al. Identifying Lensing by Substructure. I. Cusp Lenses , 2002 .
[53] Volker Perlick,et al. Ray optics, Fermat's principle, and applications to general relativity , 2000 .
[54] P. Schechter,et al. The Mean Number of Extra Microimage Pairs for Macrolensed Quasars , 2002, astro-ph/0208439.
[55] On the magnification relations in quadruple lenses: a moment approach , 1999, astro-ph/9906323.
[56] Joe W. Harris,et al. Principles of Algebraic Geometry , 1978 .
[57] Probing Dark Matter Substructure in Lens Galaxies , 2001, astro-ph/0109499.
[58] Boris Tsirelson,et al. Random complex zeroes, III. Decay of the hole probability , 2003 .
[59] Gravitational lensing by stars in a galaxy halo: Theory of combined weak and strong scattering , 1984 .
[60] Alberto M. Teguia,et al. A Mathematical Theory of Stochastic Microlensing I. Random Time-Delay Functions and Lensing Maps , 2008, 0807.0232.
[61] J. M. Boardman,et al. Singularties of differentiable maps , 1967 .
[62] P. Schneider,et al. Evidence for substructure in lens galaxies , 1997, astro-ph/9707187.
[63] A. Petters. Multiplane gravitational lensing. I. Morse theory and image counting , 1995 .
[64] A. Petters. Multiplane gravitational lensing. III. Upper bound on number of images , 1997 .
[65] N. Evans,et al. The Milky Way Galaxy as a strong gravitational lens , 2006, astro-ph/0611134.
[66] G. Gibbons,et al. Universal properties of the near-horizon optical geometry , 2008, 0809.1571.
[67] B. Gaudi,et al. Identifying Lenses with Small-Scale Structure. I. Cusp Lenses , 2002, astro-ph/0210318.
[68] Sun Hong Rhie. n-point Gravitational Lenses with 5(n-1) Images , 2003 .
[69] A. Petters,et al. A universal magnification theorem. II. Generic caustics up to codimension five , 2009, 0904.2236.
[70] A. Masiello,et al. A Morse theory for light rays on stably causal lorentzian manifolds , 1998 .
[71] A. Petters,et al. A universal magnification theorem. III. Caustics beyond codimension 5 , 2009, 0909.5235.
[72] Dmitry Khavinson,et al. On the number of zeros of certain rational harmonic functions , 2004, math/0401188.
[73] Robert Gilmore,et al. Catastrophe Theory for Scientists and Engineers , 1981 .
[74] Geometry of universal magnification invariants , 2009, 0904.0630.
[75] V. I. Arnol'd,et al. Normal forms for functions near degenerate critical points, the Weyl groups of Ak, Dk, Ek and Lagrangian singularities , 1972 .
[76] S. Rhie. Infimum microlensing amplification of the maximum number of images of n-point lens systems , 1995, astro-ph/9508123.
[77] Antal Majthay. Foundations of catastrophe theory , 1985 .
[78] M. Lombardi,et al. Gravitational lenses: odd or even images? , 1999 .
[80] M. Golubitsky,et al. Stable mappings and their singularities , 1973 .
[81] P. Schechter,et al. Quasar Microlensing at High Magnification and the Role of Dark Matter: Enhanced Fluctuations and Suppressed Saddle Points , 2002, astro-ph/0204425.
[82] K. Subramanian,et al. ‘Missing image’ in gravitational lens systems? , 1986, Nature.
[83] N. Dalal,et al. Magnification relations in gravitational lensing via multidimensional residue integrals , 2000, astro-ph/0009002.
[84] Stable singularities of wave-fronts in general relativity , 1998, gr-qc/0108012.