Geomagnetic Core Field Secular Variation Models

We analyse models describing time changes of the Earth’s core magnetic field (secular variation) covering the historical period (several centuries) and the more recent satellite era (previous decade), and we illustrate how both the information contained in the data and the a priori information (regularisation) affect the result of the ill-posed geomagnetic inverse problem. We show how data quality, frequency and selection procedures govern part of the temporal changes in the secular variation norms and spectra, which are sometimes difficult to dissociate from true changes of the core state. We highlight the difficulty of resolving the time variability of the high degree secular variation coefficients (i.e. the secular acceleration), arising for instance from the challenge to properly separate sources of internal and of external origin. In addition, the regularisation process may also result in artificial changes in the model norms and spectra. Model users should keep in mind that such features can be mis-interpreted as the signature of physical mechanisms (e.g. diffusion). Finally, we present perspectives concerning core field modelling: imposing dynamical constraints (e.g. by means of data assimilation) reduces the non-uniqueness of the geomagnetic inverse problem.

[1]  C. V. Reeves,et al.  Observation and Measurement Techniques , 2007 .

[2]  David Gubbins,et al.  A formalism for the inversion of geomagnetic data for core motions with diffusion , 1996 .

[3]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[4]  Nils Olsen,et al.  A model of the geomagnetic field and its secular variation for epoch 2000 estimated from Ørsted data , 2002 .

[5]  J. Craggs Applied Mathematical Sciences , 1973 .

[6]  Don Liu,et al.  Observing system simulation experiments in geomagnetic data assimilation , 2006 .

[7]  Alexandre Fournier,et al.  A case for variational geomagnetic data assimilation: insights from a one-dimensional, nonlinear, and sparsely observed MHD system , 2007, 0705.1777.

[8]  Jeremy Bloxham,et al.  Geomagnetic secular variation , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[9]  David Gubbins,et al.  Can the Earth's magnetic field be sustained by core oscillations? , 1975 .

[10]  Catherine Constable,et al.  Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K , 2005 .

[11]  Robert A. Langel,et al.  A Proposed Model for the International Geomagnetic Reference Field-1965 , 1967 .

[12]  A. Thomson,et al.  An improved geomagnetic data selection algorithm for global geomagnetic field modelling , 2007 .

[13]  D. Gubbins,et al.  Geomagnetic field analysis-IV. Testing the frozen-flux hypothesis , 1986 .

[14]  Nils Olsen,et al.  The Present Field , 2007 .

[15]  Kathy Whaler,et al.  Biased residuals of core flow models from satellite-derived 'virtual observatories' , 2009 .

[16]  Nils Olsen,et al.  Core surface flow modelling from high‐resolution secular variation , 2006 .

[17]  George E. Backus,et al.  Non‐uniqueness of the external geomagnetic field determined by surface intensity measurements , 1970 .

[18]  Christopher T. Russell,et al.  On the 60-year signal from the core , 2007 .

[19]  J. Cain,et al.  Geomagnetic field analysis , 1989 .

[20]  Christopher C. Finlay,et al.  Hydromagnetic waves in Earth’s core and their influence on geomagnetic secular variation , 2005 .

[21]  Hermann Lühr,et al.  Third generation of the Potsdam Magnetic Model of the Earth (POMME) , 2006 .

[22]  Christopher C. Finlay,et al.  Historical variation of the geomagnetic axial dipole , 2008 .

[23]  Matthew R. Walker,et al.  Four centuries of geomagnetic secular variation from historical records , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  R. H. Estes,et al.  Large‐scale, near‐field magnetic fields from external sources and the corresponding induced internal field , 1983 .

[25]  Susan Macmillan,et al.  Evaluation of candidate geomagnetic field models for the 10th generation of IGRF , 2005 .

[26]  Mioara Mandea,et al.  Rapidly changing flows in the Earth's core , 2008 .

[27]  Nils Olsen,et al.  A comprehensive model of the quiet‐time, near‐Earth magnetic field: phase 3 , 2002 .

[28]  David Gubbins,et al.  Geomagnetic constraints on stratification at the top of Earth’s core , 2007 .

[29]  M. Mandea,et al.  A new approach to directly determine the secular variation from magnetic satellite observations , 2006 .

[30]  David Gubbins,et al.  Fall in Earth's Magnetic Field Is Erratic , 2006, Science.

[31]  Nils Olsen,et al.  Extending comprehensive models of the Earth's magnetic field with Ørsted and CHAMP data , 2004 .

[32]  Christopher C. Finlay,et al.  Maximum entropy regularization of time-dependent geomagnetic field models , 2007 .

[33]  Richard Holme,et al.  A time{dependent model of the Earth’s magnetic fleld and its secular variation for the period 1980 to 2000 , 2006 .

[34]  Alan W. P. Thomson,et al.  The BGS magnetic field candidate models for the 10th generation IGRF , 2005 .

[35]  David Gubbins,et al.  Use of the frozen flux approximation in the interpretation of archaeomagnetic and palaeomagnetic data , 1983 .

[36]  Nils Olsen,et al.  New parameterization of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF 2005 , 2004 .

[37]  Art R. T. Jonkers,et al.  Four centuries of geomagnetic data from historical records , 2003 .

[38]  David Gubbins,et al.  Geomagnetic field analysis—V. Determining steady core-surface flows directly from geomagnetic observations , 1995 .

[39]  A. Jackson,et al.  Kelvin’s theorem applied to the Earth’s core , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  N. Gillet,et al.  Ensemble inversion of time‐dependent core flow models , 2009 .

[41]  Tapio Schneider,et al.  Comment on "Spatio-temporal filling of missing points in geophysical data sets" by D. Kondrashov and M. Ghil, Nonlin. Processes Geophys., 13, 151-159, 2006 , 2007 .

[42]  R. Holme,et al.  Modelling of attitude error in vector magnetic data: application to Ørsted data , 2000 .

[43]  D. Gubbins,et al.  Encyclopedia of geomagnetism and paleomagnetism , 2007 .

[44]  Catherine Constable,et al.  Models of Earth's main magnetic field incorporating flux and radial vorticity constraints , 2007 .

[45]  Hermann Lühr,et al.  NGDC/GFZ candidate models for the 10th generation International Geomagnetic Reference Field , 2005 .

[46]  Brian Hamilton,et al.  A novel weighting method for satellite magnetic data and a new global magnetic field model , 2010 .

[47]  Arnaud Chulliat,et al.  World Monthly Means Database Project , 2007 .

[48]  Mioara Mandea,et al.  CHAOS-2—a geomagnetic field model derived from one decade of continuous satellite data , 2009 .

[49]  Alexandre Fournier,et al.  Forward and adjoint quasi-geostrophic models of the geomagnetic secular variation , 2008, 1002.2323.

[50]  Edward Crisp Bullard,et al.  Kinematics of geomagnetic secular variation in a perfectly conducting core , 1968, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[51]  D. C. Jensen,et al.  An evaluation of the main geomagnetic field, 1940–1962 , 1965 .

[52]  C. Constable,et al.  Maximum entropy regularization of the geomagnetic core field inverse problem , 2007 .

[53]  Mioara Mandea,et al.  CHAOS—a model of the Earth's magnetic field derived from CHAMP, Ørsted, and SAC‐C magnetic satellite data , 2006 .

[54]  Andrew Jackson,et al.  Equatorially Dominated Magnetic Field Change at the Surface of Earth's Core , 2003, Science.

[55]  George E. Backus,et al.  Bayesian inference in geomagnetism , 1988 .

[56]  W. Kuang,et al.  Data assimilation in a sparsely observed one-dimensional modeled MHD system , 2007 .

[57]  Jeremy Bloxham,et al.  Simultaneous stochastic inversion for geomagnetic main field and secular variation: 1. A large‐scale inverse problem , 1987 .

[58]  Mioara Mandea,et al.  Investigation of a secular variation impulse using satellite data: The 2003 geomagnetic jerk , 2007 .

[59]  David Gubbins,et al.  Dynamics of the secular variation , 1991 .

[60]  Zhibin Sun,et al.  MoSST-DAS: The First Generation Geomagnetic Data Assimilation Framework , 2008 .

[61]  Catherine Constable,et al.  Frozen-flux modelling for epochs 1915 and 1980 , 1997 .

[62]  Hermann Lühr,et al.  Resolution of direction of oceanic magnetic lineations by the sixth‐generation lithospheric magnetic field model from CHAMP satellite magnetic measurements , 2008 .

[63]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[64]  Mioara Mandea,et al.  Modelling the Earth’s core magnetic field under flow constraints , 2010 .

[65]  Jeremy Bloxham,et al.  Time‐dependent mapping of the magnetic field at the core‐mantle boundary , 1992 .

[66]  Vincent Lesur,et al.  The second generation of the GFZ Reference Internal Magnetic Model: GRIMM-2 , 2010 .

[67]  G. D. Mead,et al.  Some new methods in geomagnetic field modeling applied to the 1960-1980 epoch. , 1982 .

[68]  Philip B. Stark,et al.  Geomagnetic field models incorporating frozen‐flux constraints , 1993 .

[69]  Catherine Constable,et al.  Geomagnetic field for 0–3 ka: 2. A new series of time‐varying global models , 2009 .

[70]  Jeremy Bloxham,et al.  Simultaneous stochastic inversion for geomagnetic main field and secular variation: 2. 1820–1980 , 1989 .

[71]  Mioara Mandea,et al.  GRIMM: the GFZ Reference Internal Magnetic Model based on vector satellite and observatory data , 2008 .

[72]  A. Jackson,et al.  Intense equatorial flux spots on the surface of the Earth's core , 2003, Nature.