A thermodynamic model of mixed organic-inorganic aerosols to predict activity coefficients

Tropospheric aerosols contain mixtures of inorganic salts, acids, water, and a large variety of organic compounds. Interactions between these substances in liquid mixtures lead to discrepancies from ideal thermodynamic behaviour. By means of activity coefficients, non-ideal behaviour can be taken into account. We present here a thermodynamic model named AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) that is able to calculate activity coefficients covering inorganic, organic, and organic-inorganic interactions in aqueous solutions over a wide concentration range. This model is based on the activity coefficient model LIFAC by Yan et al. (1999) that we modified and reparametrised to better describe atmospherically relevant conditions and mixture compositions. Focusing on atmospheric applications we considered H^+, Li^+, Na^+, K^+, NH^+_4, Mg^(2+), Ca^(2+), Cl^−, Br^−, NO^−_3, HSO^−_4, and SO^(2−)_4 as cations and anions and a wide range of alcohols/polyols composed of the functional groups CH_n and OH as organic compounds. With AIOMFAC, the activities of the components within an aqueous electrolyte solution are well represented up to high ionic strength. Most notably, a semi-empirical middle-range parametrisation of direct organic-inorganic interactions in alcohol+water+salt solutions strongly improves the agreement between experimental and modelled activity coefficients. At room temperature, this novel thermodynamic model offers the possibility to compute equilibrium relative humidities, gas/particle partitioning and liquid-liquid phase separations with high accuracy. In further studies, other organic functional groups will be introduced. The model framework is not restricted to specific ions or organic compounds and is therefore also applicable for other research topics.

[1]  M. Guendouzi,et al.  Water activities, osmotic and activity coefficients in aqueous chloride solutions atT = 298.15 K by the hygrometric method , 2001 .

[2]  J. Seinfeld,et al.  Water activities of NH4NO3/(NH4)2SO4 solutions , 1992 .

[3]  William F. Furter,et al.  Thermodynamic behavior of electrolytes in mixed solvents : a symposium sponsored by the Division of Industrial and Engineering Chemistry at the 170th meeting of the American Chemical Society, Chicago, Ill., Aug. 27-28, 1975 , 1976 .

[4]  H. Galleguillos,et al.  Solubilities, Densities, Viscosities, Electrical Conductivities, and Refractive Indices of Saturated Solutions of Potassium Sulfate in Water + 1-Propanol at 298.15, 308.15, and 318.15 K , 2002 .

[5]  M. Iliuta,et al.  Extended UNIQUAC model for correlation and prediction of vapour–liquid–solid equilibria in aqueous salt systems containing non-electrolytes. Part A. Methanol–water–salt systems , 2000 .

[6]  Claudia Marcolli,et al.  Water activity in polyol/water systems: new UNIFAC parameterization , 2005 .

[7]  Ann M. Middlebrook,et al.  Single-particle mass spectrometry of tropospheric aerosol particles , 2006 .

[8]  A. Dinane Thermodynamic properties of NaCl–NH4Cl–LiCl–H2O at T = 298.15 K: Water activities, osmotic and activity coefficients , 2008 .

[9]  M. A. Esteso,et al.  Activity coefficients for NaCl in ethanol-water mixtures at 25°C , 1989 .

[10]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[11]  J. Spann a Laboratory Study of Single Sulfate Aerosols Using Electrodynamic Suspension , 1984 .

[12]  A. Taylor Precipitation of Salts , 1897 .

[13]  B. Ghalami-Choobar,et al.  Activity coefficients for NH4Cl in ethanol–water mixed solvents by electromotive force measurements , 2005 .

[14]  F. Yoshida,et al.  Salt Effect in Vapor-Liquid Equilibria , 1964 .

[15]  Jürgen Gmehling,et al.  A gE model for single and mixed solvent electrolyte systems: 1. Model and results for strong electrolytes , 1994 .

[16]  P. Brimblecombe,et al.  Comment on the "Thermodynamic dissociation constant of the bisulfate ion from Raman and ion interaction modeling studies of aqueous sulfuric acid at low temperatures". , 2005, The journal of physical chemistry. A.

[17]  A. R. Thompson,et al.  Solubility and Density Isotherms for Sodium Sulfate–Ethylene Glycol–Water , 1949 .

[18]  C. Tsonopoulos,et al.  An empirical correlation of second virial coefficients , 1974 .

[19]  E. Sada,et al.  SALT EFFECTS ON VAPOR-LIQUID EQUILIBRIUM OF ISOPROPANOL-WATER SYSTEM , 1975 .

[20]  R. L. Perry,et al.  Experimental measurement of vapor-liquid equilibrium in alcohol/water/salt systems , 1990 .

[21]  Ming-Chung Chen,et al.  Salting effect on the liquid-liquid equilibria for the ternary system water + N-methyl-2-pyrrolidone + 1 -pentanol , 2008 .

[22]  Glen R. Cass,et al.  Quantification of urban organic aerosols at a molecular level: Identification, abundance and seasonal variation , 1993 .

[23]  Erik Swietlicki,et al.  Organic aerosol and global climate modelling: a review , 2004 .

[24]  C. Dussap,et al.  Representation of vapour -liquid equilibria in water-alcohol-electrolyte mixtures with a modified UNIFAC group-contribution method , 1994 .

[25]  B. Luo,et al.  Comment on the "Thermodynamic dissociation constant of the bisulfate ion from Raman and ion interaction modeling studies of aqueous sulfuric acid at low temperatures". , 2005 .

[26]  D. Irish,et al.  Vibrational spectral studies of solutions at elevated temperatures and pressures. 8. A Raman spectral study of ammonium hydrogen sulfate solutions and the hydrogen sulfate-sulfate equilibrium , 1986 .

[27]  James F. Pankow,et al.  Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water—Part 2: Consideration of phase separation effects by an X-UNIFAC model , 2006 .

[28]  G. Scatchard,et al.  NON-ELECTROLYTE SOLUTIONS , 1934 .

[29]  Y. Ming,et al.  Thermodynamic equilibrium of organic‐electrolyte mixtures in aerosol particles , 2002 .

[30]  A. I. Johnson,et al.  Vapor‐liquid equilibrium in systems containing dissolved salts , 1965 .

[31]  J. Seinfeld,et al.  Determination of Water Activity in Ammonium Sulfate and Sulfuric Acid Mixtures Using Levitated Single Particles , 1994 .

[32]  P. Brimblecombe,et al.  A Thermodynamic Model of the System HCl-HNO3-H2SO4-H2O, Including Solubilities of HBr, from <200 to 328 K , 1995 .

[33]  M. Gilles,et al.  Organic Aerosol Growth Mechanisms and Their Climate-Forcing Implications , 2004, Science.

[34]  A. Wexler,et al.  Thermodynamic Model of the System H , 2009 .

[35]  E. A. Guggenheim,et al.  Statistical thermodynamics of super-lattices , 1940, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[36]  Alan Jones,et al.  SOLUBILITY AND DENSITY ISOTHERMS FOR POTASSIUM SULFATE-WATER-2-PROPANOL , 1989 .

[37]  F. A. Gifford,et al.  Atmospheric Chemistry and Physics of Air Pollution , 1987 .

[38]  M. Iliuta,et al.  Extended UNIQUAC model for correlation and prediction of vapor¿liquid¿liquid¿solid equilibria in aqueous salt systems containing non-electrolytes. Part B. Alcohol (ethanol, propanols, butanols)¿water¿salt systems , 2004 .

[39]  Thomas Peter,et al.  Morphological Investigations of Single Levitated H2SO4/NH3/H2O Aerosol Particles during Deliquescence/Efflorescence Experiments , 2004 .

[40]  Liang-Sun Lee,et al.  Phase equilibria for propan-1-ol + water + sodium chloride and + potassium chloride and propan-2-ol + water + lithium chloride and + lithium bromide , 1993 .

[41]  Iver Brevik,et al.  THERMODYNAMIC PROPERTIES OF THE , 1998 .

[42]  A. Francesconi,et al.  Salt effect on phase equilibria by a recirculating still , 1992 .

[43]  William F. Furter,et al.  Thermodynamic Behavior of Electrolytes in Mixed Solvents II , 1976 .

[44]  R. Santis,et al.  Liquid—liquid equilibria in water—aliphatic alcohol systems in the presence of sodium chloride , 1976 .

[45]  Aage Fredenslund,et al.  Group‐contribution estimation of activity coefficients in nonideal liquid mixtures , 1975 .

[46]  M. Ferra,et al.  Activity Coefficients of Sodium Chloride in Water–Ethanol Mixtures: A Comparative Study of Pitzer and Pitzer–Simonson Models , 2001 .

[47]  Donald E. Irish,et al.  Vibrational spectral studies of solutions at elevated temperatures and pressures. IX. Acetic acid , 1988 .

[48]  R. Heyrovská Ionic Concentrations and Hydration Numbers of “Supporting Electrolytes” , 2006 .

[49]  John H. Seinfeld,et al.  Prediction of activity coefficients in liquid aerosol particles containing organic compounds, dissolved inorganic salts, and water—Part 3: Organic compounds, water, and ionic constituents by consideration of short-, mid-, and long-range effects using X-UNIFAC.3 , 2006 .

[50]  D. Irish,et al.  Osmotic and activity coefficients of aqueous ammonium bromide solutions at 25.deg. , 1972 .

[51]  D. Murphy,et al.  Chemical composition of single aerosol particles at Idaho Hill: Positive ion measurements , 1997 .

[52]  I. Tang Thermodynamic and optical properties of mixed‐salt aerosols of atmospheric importance , 1997 .

[53]  Beiping Luo,et al.  Internal mixing of the organic aerosol by gas phase diffusion of semivolatile organic compounds , 2004 .

[54]  Masahiro Kato,et al.  MEASUREMENT OF SALT EFFECT ON VAPOR-LIQUID EQUILIBRIA BY BUBBLE AND CONDENSATION POINT METHOD , 1971 .

[55]  I. Tang,et al.  Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance , 1994 .

[56]  M. D. Saquete,et al.  Liquid-liquid-solid equilibria for the ternary systems water-sodium chloride or potassium chloride-1-propanol or 2-propanol , 1994 .

[57]  A. R. Thompson,et al.  Salt Effect in Vapor-Liquid Equilibria. Ethanol-Water Saturated with Potassium Nitrate. , 1950 .

[58]  S. Renganarayanan,et al.  Salt effect in phase equilibria and heat of mixing: effect of dissolved inorganic salts on the liquid-liquid equilibria of ethyl acetate-2-propanol-water system and the vapor-liquid equilibria and heat of mixing of its constituent binaries , 1991 .

[59]  J. Gmehling,et al.  Effect of calcium nitrate on the vapor-liquid equilibria of ethanol + water and 2-propanol + water , 1994 .

[60]  H. Bathrick Precipitation of Salts , 1896 .

[61]  P. Brimblecombe,et al.  Thermodynamic Properties of Aqueous (NH4)2SO4 to High Supersaturation as a Function of Temperature , 1995 .

[62]  J. Prausnitz,et al.  Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems , 1975 .

[63]  A. Wexler,et al.  Thermodynamic Model of the System H+−NH4+−Na+−SO42-−NO3-−Cl-−H2O at 298.15 K , 1998 .

[64]  J. Gmehling,et al.  Low-pressure isobaric vapor-liquid equilibria of ethanol/water mixtures containing electrolytes , 1991 .

[65]  D. Murphy,et al.  Observations of organic material in individual marine particles at Cape Grim during the First Aerosol Characterization Experiment (ACE 1) , 1998 .

[66]  Ernesto Vercher,et al.  Isobaric Vapor−Liquid Equilibrium for Ethanol + Water + Potassium Nitrate , 1996 .

[67]  U. Decker,et al.  Zur Berechnung von Aktivitätskoeffizienten in ternären Systemen mit einer nichtflüchtigen Komponente aus Messungen des Gesamtdampfdruckes , 2010 .

[68]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[69]  D. Irish,et al.  Equilibriums and proton transfer in the bisulfate-sulfate system , 1970 .

[70]  C. Chan,et al.  Study of water activities of aerosols of mixtures of sodium and magnesium salts , 2000 .

[71]  E. Macedo,et al.  Representation of salt solubility in mixed solvents: a comparison of thermodynamic models , 1996 .

[72]  E. H ckel,et al.  Zur Theorie der Elektrolyte , 1924 .

[73]  J. Gmehling,et al.  Modified LIQUAC and Modified LIFACA Further Development of Electrolyte Models for the Reliable Prediction of Phase Equilibria with Strong Electrolytes , 2006 .

[74]  C. Chan,et al.  Study of water activities of supersaturated aerosols of sodium and ammonium salts , 2000 .

[75]  A. Tanioka,et al.  Salting effect on the liquid-liquid equilibria for the partially miscible systems of n-propanol-water and i-propanol-water , 1998 .

[76]  K. D. Collins,et al.  Dynamic hydration numbers for biologically important ions. , 2002, Biophysical chemistry.

[77]  Tomi Raatikainen,et al.  Application of several activity coefficient models to water-organic-electrolyte aerosols of atmospheric interest , 2005 .

[78]  M. D. Saquete,et al.  Liquid-liquid-solid equilibria for the ternary systems butanols + water + sodium chloride or + potassium chloride , 1996 .

[79]  M. Ferra,et al.  Activity Coefficients of Potassium Chloride and Sodium Chloride in the Quaternary System KCl-NaCl-Water-Ethanol , 2002 .

[80]  Claus J. Nielsen,et al.  Spectroscopic Study of Aqueous H2SO4 at Different Temperatures and Compositions: Variations in Dissociation and Optical Properties , 2003 .

[81]  R. Robinson,et al.  Interactions in Aqueous Nonelectrolyte Solutions. I. Solute-Solvent Equilibria , 1966 .

[82]  Peter Brimblecombe,et al.  Thermodynamic Model of the System H+−NH4+−SO42-−NO3-−H2O at Tropospheric Temperatures , 1998 .

[83]  Yiping Tang,et al.  Salting effect in partially miscible systems of n-butanolwater and butanonewater 1. Determination and correlation of liquid-liquid equilibrium data , 1995 .

[84]  Jürgen Gmehling,et al.  Prediction of vapor-liquid equilibria in mixed-solvent electrolyte systems using the group contribution concept , 1999 .

[85]  Maria Cristina Facchini,et al.  Characterization of water‐soluble organic compounds in atmospheric aerosol: A new approach , 2000 .

[86]  W. Hamer,et al.  Osmotic Coefficients and Mean Activity Coefficients of Uni‐univalent Electrolytes in Water at 25°C , 1972 .

[87]  I. Tang,et al.  Aerosol growth studies—III ammonium bisulfate aerosols in a moist atmosphere , 1977 .

[88]  B. R. Staples Activity and osmotic coefficients of aqueous sulfuric acid at 298.15 K , 1981 .

[89]  J. J. Fox,et al.  XLII.—The solubility of potassium sulphate in concentrated aqueous solutions of non-electrolytes , 1910 .

[90]  M. Ferra,et al.  Activity Coefficients of Potassium Chloride in Water–Ethanol Mixtures , 1999 .

[91]  J. Prausnitz,et al.  Recovery of Anhydrous Na2SO4 from SO2-Scrubbing Liquor by Extractive Crystallization: Liquid−Liquid Equilibria for Aqueous Solutions of Sodium Carbonate, Sulfate, and/or Sulfite Plus Acetone, 2-Propanol, or tert-Butyl Alcohol , 1996 .

[92]  Aage Fredenslund,et al.  Vapor−Liquid Equilibria by UNIFAC Group Contribution. 6. Revision and Extension , 1979 .

[93]  Claudia Marcolli,et al.  Phase changes during hygroscopic cycles of mixed organic/inorganic model systems of tropospheric aerosols. , 2006, The journal of physical chemistry. A.

[94]  J. Prausnitz,et al.  Liquid-liquid equilibria for saturated aqueous solutions of sodium sulfate + 1-propanol, 2-propanol, or 2-methylpropan-2-ol , 1992 .

[95]  D. Murphy,et al.  Chemical components of single particles measured with Particle Analysis by Laser Mass Spectrometry (PALMS) during the Atlanta SuperSite Project: Focus on organic/sulfate, lead, soot, and mineral particles , 2002 .

[96]  James F. Pankow,et al.  Gas/particle partitioning of neutral and ionizing compounds to single- and multi-phase aerosol particles. 2. Phase separation in liquid particulate matter containing both polar and low-polarity organic compounds , 2004 .

[97]  M. Guendouzi,et al.  Water activity, osmotic and activity coefficients of aqueous solutions of Li2SO4, Na2SO4, K2SO4, (NH4)2SO4, MgSO4, MnSO4, NiSO4, CuSO4, and ZnSO4 at T=298.15 K , 2003 .

[98]  C. Chan,et al.  The Water Activities of MgCl2, Mg(NO3)2, MgSO4, and Their Mixtures , 1999 .

[99]  R. Heyrovská Ionic Concentrations and Hydration Numbers of “Supporting Electrolytes” , 2006 .

[100]  D. A. Palmer,et al.  Osmotic and Activity Coefficients of Aqueous (NH4)2SO4 as a Function of Temperature, and Aqueous (NH4)2SO4−H2SO4 Mixtures at 298.15 K and 323.15 K , 1996 .