Towards Understanding Creative Language in Tweets
暂无分享,去创建一个
Yang Yu | Dan Moldovan | Linrui Zhang | Yisheng Zhou | D. Moldovan | Linrui Zhang | Yang Yu | Yisheng Zhou
[1] Preslav Nakov,et al. SemEval-2016 Task 4: Sentiment Analysis in Twitter. , 2019 .
[2] Preslav Nakov,et al. SemEval-2016 Task 4: Sentiment Analysis in Twitter , 2016, *SEMEVAL.
[3] Nikos Pelekis,et al. DataStories at SemEval-2017 Task 4: Deep LSTM with Attention for Message-level and Topic-based Sentiment Analysis , 2017, *SEMEVAL.
[4] Yiming Yang,et al. XLNet: Generalized Autoregressive Pretraining for Language Understanding , 2019, NeurIPS.
[5] Georgios Paraskevopoulos,et al. NTUA-SLP at SemEval-2018 Task 2: Predicting Emojis using RNNs with Context-aware Attention , 2018, SemEval@NAACL-HLT.
[6] Sanja Fidler,et al. Skip-Thought Vectors , 2015, NIPS.
[7] Tony Veale,et al. IronyMagnet at SemEval-2018 Task 3: A Siamese network for Irony detection in Social media , 2018, *SEMEVAL.
[8] Iyad Rahwan,et al. Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm , 2017, EMNLP.
[9] Horacio Saggion,et al. Are Emojis Predictable? , 2017, EACL.
[10] Saif Mohammad,et al. SemEval-2018 Task 1: Affect in Tweets , 2018, *SEMEVAL.
[11] Dennis Asamoah Owusu,et al. UMDuluth-CS8761 at SemEval-2018 Task 2: Emojis: Too many Choices? , 2018, *SEMEVAL.
[12] Çagri Çöltekin,et al. Tübingen-Oslo at SemEval-2018 Task 2: SVMs perform better than RNNs in Emoji Prediction , 2018, SemEval@NAACL-HLT.
[13] Horacio Saggion,et al. SemEval 2018 Task 2: Multilingual Emoji Prediction , 2018, *SEMEVAL.
[14] Ming Zhou,et al. Coooolll: A Deep Learning System for Twitter Sentiment Classification , 2014, *SEMEVAL.
[15] Georgios Paraskevopoulos,et al. NTUA-SLP at SemEval-2018 Task 3: Tracking Ironic Tweets using Ensembles of Word and Character Level Attentive RNNs , 2018, *SEMEVAL.
[16] Richard Evans,et al. WLV at SemEval-2018 Task 3: Dissecting Tweets in Search of Irony , 2018, *SEMEVAL.
[17] Saif Mohammad,et al. NRC-Canada-2014: Recent Improvements in the Sentiment Analysis of Tweets , 2014, SemEval@COLING.
[18] Véronique Hoste,et al. SemEval-2018 Task 3: Irony Detection in English Tweets , 2018, *SEMEVAL.
[19] Man Liu,et al. EmoNLP at SemEval-2018 Task 2: English Emoji Prediction with Gradient Boosting Regression Tree Method and Bidirectional LSTM , 2018, *SEMEVAL.
[20] Tomoaki Ohtsuki,et al. A Pattern-Based Approach for Sarcasm Detection on Twitter , 2016, IEEE Access.
[21] Preslav Nakov,et al. SemEval-2013 Task 2: Sentiment Analysis in Twitter , 2013, *SEMEVAL.
[22] Cees Snoek,et al. Image2Emoji: Zero-shot Emoji Prediction for Visual Media , 2015, ACM Multimedia.
[23] Véronique Hoste,et al. Exploring the Realization of Irony in Twitter Data , 2016, LREC.
[24] Ming-Wei Chang,et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.
[25] Chuhan Wu,et al. THU_NGN at SemEval-2018 Task 3: Tweet Irony Detection with Densely connected LSTM and Multi-task Learning , 2018, *SEMEVAL.